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ABSTRACT. When an ice-flow model is constrained by data that exist over only a section of an ice sheet,
it is computationally advantageous to limit the model domain to only that section. For example, a
limited domain near an ice-core site might cross an ice divide, and have no termini. Accurately
calculating ice-sheet evolution in response to spatial and temporal variations in climate and ice flow
depends on accurately calculating the transient ice flux crossing the limited-domain boundaries. In the
absence of information from outside the limited domain, this is an ill-posed problem. Boundary
conditions based only on information from inside the limited domain can produce ice-sheet evolution
incompatible with the full ice sheet within which we suppose it to exist. We use impulse-response
functions to provide boundary values that are informed by the external ice sheet, without
conventionally ‘nesting’ the limited domain in a full ice-sheet model. Evolution within a limited
domain can then be consistent with evolution of the full ice sheet. Our treatment of limited-domain
boundary conditions is designed for future use in an inverse problem in which external changes that
affected the limited domain can be inferred from data from within the limited domain.

1. INTRODUCTION
1.1. Ice-flow models
Numerical ice-flow models are widely used to solve
problems in glaciology that cannot be solved analytically
(e.g. Van der Veen, 1999; Hooke, 2005, p. 288). We can use
an ice-flow model in combination with any available
information about past and present ice-sheet geometry,
ice-sheet internal structure and climate variables that, for
example, can be determined from ice-penetrating radar (e.g.
Conway and others, 1999; Vaughan and others, 1999), from
ice cores (e.g. NorthGRIP Members, 2004) or from glacial–
geological reconstructions (e.g. Denton and Hughes, 2002;
Stone and others, 2003). A variety of these geophysical and
paleoclimatic data have often been collected together near
ice-core sites, and ice-flow models can assist in ice-core
interpretation by revealing strain history and origin sites for
ice in a core. This motivates us to investigate ice-sheet and
climate histories in the vicinity of an ice divide. While an
ice-core site is chosen because the history of ice flow there
is usually simpler to decipher than at other sites on an ice
sheet, the ice-divide thickness and the ice-divide location
can change due to temporal variations in accumulation rate
and ice flow. In addition, spatial variations alter particle
trajectories within the ice, and the spatial dimension should
be included in any ice-flow model that is used to interpret
an ice-core record where ice-divide migration may have
been significant. Since climate information that is recorded
in the ice has been affected by the history of ice flow (e.g.
Cuffey and Paterson, 2010, p. 650), ice-flow models that
capture ice-sheet transients are needed in combination with
laboratory analyses of ice-core samples to infer the correct
climate history; this is a motivation for finding a solution
to the problem of modeling transient ice flow with a
limited domain.

Some of the information about ice-sheet history that is
sought from data in the vicinity of an ice divide can be
inferred by solving an inverse problem. However, compu-
tational efficiency is requiredwhen solving inverse problems,
which can require many iterations of the ice-flow model.
Computational efficiency is also necessary when using a
higher-resolution model or when running the model over
long timescales. Limiting the model domain to include only
the relevant portions of the ice sheet is a way to reduce
computation time. This approach is also simple, which is an
objective of our ice-sheet model, and has a similar motivation
to minimal glacier models (e.g. Oerlemans, 2011). In
addition, when the model domain is limited we do not need
to make estimates of observable quantities in regions where
model-parameter values and boundary conditions are
unconstrained, or where data are unavailable. However,
limiting the domain of a transient ice-flow model can lead to
an ill-posed problem because accurate calculation of the
boundary values in the limited-domain model requires add-
itional information to ensure that the limited domain evolves
consistently with the full domain within which it exists; this is
also a motivation for finding a solution to the problem of
modeling transient ice-flow with a limited domain.

In practice, this additional information can be provided to
the limited-domain model by embedding the limited-
domain model (also known as a regional model) in a full-
domain model (also known as a global model). There are at
least two approaches to embedding a limited domain in a
full domain. In a commonly used approach, the limited-
model boundary values are provided directly from calcula-
tions performed within a full-domain model where some
interval grid interfaces coincide with boundaries of the
limited-domain model; this is referred to as a ‘nested’ model.
In our new approach, the limited-domain boundary values
are provided from calculations performed within the
limited-domain model that rely on the behavior character-
istics of the full-domain model, rather than specifically on its
detailed evolution.
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1.2. Nested ice-flow model
Numerical models of physical processes often use nesting
schemes. An example is a regional climate model that is
driven by the lower-resolution output of a global climate
model (e.g. Christensen and others, 2007, ch. 11; Salathe
and others, 2007), or a nested ocean-circulation model
(e.g. Blayo and Debreu, 2006). In ice-sheet modeling,
higher resolution and/or higher-order physics that are
important in specific regions of an ice sheet have been
nested in a full ice-flow model that otherwise has coarser
resolution and/or simplified physics. For example, several
models of ice-sheet evolution have incorporated regions
with higher spatial resolution, which are nested in a three-
dimensional (3-D) thermomechanically coupled model of
the entire ice sheet (e.g. Marshall and Clarke, 1997;
Fastook, 2005; Huybrechts and others, 2007, 2009). These
modifications for regions of fast ice flow, for ice-shelf flow,
or for regions requiring higher-order physics, result in full
ice-sheet evolution that is more realistic, while remaining
computationally tenable compared to a full-domain model
at the resolution or sophistication of the nested component.
In another example, Gagliardini and Meyssonnier (2002)
used a full ice-flow model to calculate lateral boundary
conditions for their local anisotropic flow model. The local
model and the full-domain model were calculated syn-
chronously, so the calculated quantities within both models
were always consistent.

1.3. Limited-domain ice-flow model
We define a limited-domain ice-flow model as a model
whose spatial calculation domain includes only a limited
portion of an ice sheet. In our case, our model domain is
limited to the vicinity of an ice divide (Fig. 1). In transient
flow, the ice-surface profile is specified as an initial
condition. A full-domain model always has a natural
zero-flux boundary condition or else a calving condition
at its terminus. However, because a limited domain has no
natural boundary condition, evolution within the limited
domain is an ill-posed problem. The ice flux crossing the
arbitrarily defined boundaries must be specified or calcu-
lated. Calculating that boundary flux in a way that is
inconsistent with the preferred external ice sheet can lead
to numerically driven ice-sheet transients and to ice-sheet

behavior that is incompatible with that preferred external
domain. We make the limited-domain problem well-posed
by using impulse-response functions derived from a full-
domain model to calculate variations in ice flux due to
variations in accumulation rate and ice flow that originate
within the limited domain, and we prescribe variations in
ice flux due to variations that originate external to the
limited domain.

In this paper, we discuss the general problem of modeling
transient ice flow with a limited domain. Our primary focus
is on treatment of the boundary conditions. In order to
illustrate our points, we must use some specific ice-flow
model. We chose a flowband model that uses the shallow-
ice approximation (SIA; e.g. Cuffey and Paterson, 2010,
p. 322) because it is a simple representation of ice flow in
the ice-sheet interior. In the Appendix we present the details
of our solution for ice-sheet evolution within a limited-
domain flowband. We emphasize that our general approach
could also be applied to transient ice-flow problems using
other ice-flow models of different complexity. Another case
is a 3-D region that has natural (no-flux) lateral boundaries
(e.g. valley walls or ice-sheet catchment boundaries).

1.4. Ice-flux variations within the limited domain
In the absence of physics that allow bifurcation of solutions
(e.g. elevation–precipitation feedback (Bodvarsson, 1955) or
the tidewater-glacier cycle (Post, 1975; Meier and Post,
1987)), a full-domain model should return to its original
steady configuration when the mass-balance forcing returns
to its original configuration. We also expect a limited-
domain model to show the same behavior. We use behavior
characteristics of a full-domain model to ensure that ice-
sheet evolution in the limited-domain model is consistent
with evolution in the full-domain model. First, we embed
the limited-domain model in a full-domain model that
includes an ice-sheet terminus, so that the boundary
condition is known. If the limited domain includes an ice
divide, the full domain should include both termini. Second,
we characterize the behavior of this full ice sheet by
calculating its response to an impulsive perturbation in
accumulation rate. Third, we use the impulse-response
functions at the limited-domain boundaries to control the
flux entering or leaving the limited domain at each time-step

Fig. 1. A limited-domain ice sheet is embedded in a full-domain ice sheet. Surface elevation S(x,t) is a function of horizontal position x and
time t. In this case, bed elevation B(x) is a function only of x. Ice fluxes q(x,t) at both the left and the right boundaries of the limited domain
depend on variations in accumulation rate and in ice flow that originate internal to the limited domain and external to the limited domain.
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in response to actual variations in accumulation rate. This
enables the limited-domain model to adjust to any climate
change at a glaciologically realistic rate that is compatible
with the full ice-sheet model experiencing the same climate
changes. We illustrate our general approach to establishing
well-posed boundary conditions using the specific limited-
domain model and the specific full-domain model described
in the Appendix.

1.5. Ice-flux variations external to the limited domain
Ice-flow variations within the limited domain can also be
driven by variations in ice flow and climate that originate
external to its arbitrary boundaries. For example, ice-shelf
loss, or variations in sea level or ice-stream activity can
ultimately affect the flow of interior ice (e.g. Payne and
others, 2004). The need for additional information from
outside the limited domain in order to correctly model ice-
sheet evolution on a limited domain is a drawback.
However, it may be possible to infer those externally forced
fluxes by solving an inverse problem using internal-layer
architecture within the limited domain; this is a future
research direction. In this paper, we show that we can
correctly calculate the evolution on the limited domain in
the presence of external forcing if we know its impact on the
ice flux crossing the limited-domain boundaries.

2. BOUNDARY CONDITIONS FOR A LIMITED-
DOMAIN MODEL
The key question that we address in this paper is how to
assign appropriate boundary conditions on a limited-
domain model. We illustrate the concepts with the simplest
form of limited-domain model, i.e. a 1.5-dimensional
(1.5-D) flowband.

2.1. Mass conservation
When the limited domain is a flowband, we can calculate
ice-thickness evolution by solving the mass-conservation
equation (e.g. Cuffey and Paterson, 2010, p. 333),

@hðx, tÞ
@t

¼ � 1
W ðxÞ

@qðx, tÞ
@x

� �
þ _bðx, tÞ, ð1Þ

where x follows the center of the flowband, h(x,t) is the ice
thickness, q(x,t) is the total volumetric ice flux in the
flowband of width W(x), and _bðx, tÞ is the accumulation rate
(or ablation rate). Ice thickness h(x,t) is the difference
between the surface elevation Sðx, tÞ and the bed elevation
BðxÞ. As discussed in the Appendix, we illustrate the
concepts using the SIA, and we solve this conservation
equation numerically using an implicit approach (e.g.
Patankar, 1980). To solve for ice-thickness evolution, we
need to calculate the ice flux q(x,t). The accumulation-rate
history _bðx, tÞ is prescribed, or can be inferred as part of an
inverse problem if internal-layer data are available (e.g.
Waddington and others, 2007; Koutnik, 2009). Without
information from the external ice sheet, thickness evolution
in a limited domain is an ill-posed problem; using our
specific ice-flow model to illustrate our points, we show
how to make this a well-posed problem.

2.2. Flux boundary conditions uninformed by external
domain
A steady-state mass-balance pattern produces a well-
defined steady-state ice-flux pattern. However, flux depends
on both ice thickness and slope, so in a limited domain
there can always be a trade-off between thickness and
slope. A thinner steady solution with a steeper slope (i.e. a
smaller external ice sheet) can have the same flux
distribution as a thicker solution with gentler slope (i.e. a
larger external ice sheet). In a transient model, no extrapo-
lation scheme based on values from inside the limited
domain, regardless of its order, can calculate the correct ice
flux q(x,t) crossing the limited-domain boundaries in any
particular full ice sheet that we might want it to represent.
While the calculated flux may adequately represent be-
havior of some whole ice sheet, we will show that which
whole ice sheet it represents is determined by numerical
truncation errors from calculations on a discrete grid. To
represent a particular whole ice sheet, a correct flux
treatment on each limited-domain boundary requires
information from both sides of that boundary.

In a limited-domain model, the ice thickness is known
only at the initial time-step; as the ice sheet evolves, there is
no further explicit constraint on ice thickness at the limited-
domain boundaries. Therefore, the boundary treatment must
incorporate some information about the span of the full ice
sheet. In addition, we know that the ice flux q(x,t) crossing
the limited-domain boundaries through time depends on
accumulation rate and ice flow both within the limited
domain and external to the limited domain; therefore any
extrapolation scheme based solely on information from
within the limited domain will be inadequate.

Figure 2a shows four points on an initial steady-state ice
surface calculated using Eqn (A9). The ice flux crossing the
left and right boundaries was calculated at each time-step by
extrapolating the thickness and slope from interior points
using spatial grids with two different horizontal-grid resolu-
tions, i.e. 300 and 600m. The ice-sheet surface including

Fig. 2. (a) Solid line shows the initial steady-state surface profile on
a limited domain. With boundary conditions that incorporate no
information about the ice sheet outside the limited domain, the ice
sheet evolves to a different steady-state profile under steady-state
climate forcing. The thick and thin dashed lines show the new
steady-state surfaces obtained with horizontal grid resolution of
600 and 300m respectively. (b) Elevations of points 1–4 on the
initial ice surface in (a) are tracked through time. (c) Evolution of
ice flux at the four locations calculated with a grid resolution
of 600m.
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these four points was then tracked over time under steady-
state forcing. Instead of holding the original steady-state
profile, the ice sheet drifted toward different steady states
(dashed lines in Fig. 2a), depending on the grid spacing
used. Figure 2b shows how the ice surface at the four
locations changes over time in response to these erroneous
changes in the calculated boundary flux. Different hori-
zontal-grid resolutions can give different extrapolated values
of the boundary flux that lead to different ice-sheet
evolution. This evolution is physically possible because,
for an ice sheet with an unknown span, there are infinitely
many surface profiles that have the same flux profile across
the limited domain, and there is no ice-thickness informa-
tion provided after the initial time; a full-domain model with
a known span and ice thickness equal to zero at the terminus
does not have this problem.

Instead of using an extrapolation to calculate the
boundary flux, we could estimate the flux crossing the last
downstream finite-volume edge with a kinematic calcula-
tion. The kinematic flux (Eqn (A1)) is calculated by
integrating the continuity equation (Eqn (1)). The accumu-
lation rate _bðx, tÞ is known, and the rate of ice-thickness
change at the current time-step _hðx, tiÞ can be estimated
from the known value of _hðx, ti�1Þ at the previous time-step.
Calculating the boundary flux kinematically using Eqn (A1)
does allow the model in Figure 2 to hold steady state.
However, when real transient forcing occurs, a limited-
domain model with kinematic boundary conditions fails to
return to its original steady-state profile after the original
steady-state forcing is re-established; this is a critical point
because, in the absence of any catastrophe or cusp-related
behavior, a real ice sheet should return to its original state
after the original forcing was re-established. In order for our
numerical limited-domain model to be able to return to its
original steady state and behave like a real ice sheet, the
model must keep track of the original steady-state volume.
Equation (A1) allows the volume to change through time
without any memory; in the model there was no accounting
of how the ice volume changed from the original state.
Modifying Eqn (A1) by dropping the term in _hðx, tÞ allows
the model to retain information about the initial steady state.
By instantly exporting any additional volume that enters the
domain in a given time-step through transient accumulation,
its volume never changes. However, instantaneous export is
not glaciologically realistic. Therefore, kinematic-flux cal-
culations are also inadequate to represent flux crossing the
limited-domain boundaries. These simple tests highlight the
challenge of solving for transient ice flow on a limited
domain and demonstrate that extrapolating boundary
conditions to limited-domain boundaries without regard
for properties of the full-domain ice sheet in which it exists,
can produce ice-sheet evolution that is incompatible with
that external ice sheet.

2.3. Flux boundary conditions informed by external
domain
In a well-posed ice-sheet evolution problem, an ice sheet
returns to an initial steady state when forcing terminates. By
controlling the ice thickness, slope and velocity at the
limited-domain boundaries, a full-domain ice sheet controls
the volume of ice leaving the limited domain at any time.
This suggests that in order to have a well-posed limited-
domain problem, we must also control the flux that leaves

the domain in a glaciologically reasonable way, driven by
climate variations and ice-flow changes both within the
domain and exterior to the domain. In this paper, we focus
on calculating the flux change at the limited-domain
boundaries due to variations in accumulation rate and ice
flow that originate within a limited domain.

2.3.1. Temporarily embed the limited-domain model
in a full-domain model
First, we temporarily embed our limited-domain model in a
full-domain model that provides a more generic context
than traditional nesting schemes because it is used in order
to calculate impulse-response functions that characterize
this full domain. The shape of the full-domain model is
matched to the shape of the limited-domain model over the
horizontal extent of the limited domain.

To illustrate these necessary boundary-condition con-
cepts, we use a specific numerical solution for a steady-state
surface profile to extend our limited-domain model (Eqn
(A9)); details are provided in the Appendix. To calculate the
full ice-sheet shape, we must prescribe a mass-balance
pattern outside the limited domain. In Figure 3a, the
prescribed accumulation-rate pattern across the limited
domain was uniform. We will use a realistic estimate of
mass balance outside the limited domain if it is available.
Here we apply a simple mass-balance pattern with a zone of
uniform accumulation rate c and a zone of uniform ablation
rate a (see Appendix), which follows the steady-state
analytical model by Paterson (1972) so that we can validate
our steady-state numerical model. The uniform ablation rate
over the new portion of the domain has a rate determined by
a ratio of accumulation rate c to ablation rate a, which we
chose to be c/a=0.2. In this case, the average accumulation
rate is 20 cma–1 and the average ablation rate near the
terminus is 1ma–1.

Fig. 3. (a) The prescribed accumulation-rate and ablation-rate
pattern used to generate a full-domain surface profile by solving
Eqn (A9). The solid black line shows the known mass-balance rate
for the limited domain, and the dashed line shows the estimated
values across the extended domain. (b) Ice-surface profile for a
limited domain that crosses an ice divide (solid line), and for the
corresponding full domain (dashed line) within which it is
embedded. The bed topography is flat. The dot at the right-side
boundary of the limited domain marks the spatial position used in
subsequent figures.
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2.3.2. Find response functions for the full-domain
model
Second, we numerically calculate the nonlinear evolution of
the full-domain ice sheet in response to an impulsive
perturbation in accumulation rate. The ice sheet is initially
in a steady state described by thickness h0(x) and mass-
balance pattern _b0ðxÞ. Nye (1965) linearized Eqn (1) and
discussed the idea of an impulse-response function
h1 x, t � t1ð Þ for ice thickness that described the subsequent
deviations in ice thickness along the full-domain surface,
from the application of the impulsive perturbation at time t1,
until the surface had (effectively) returned to steady state.
Nye (1960) showed that ice-thickness response h1 x, t � t1ð Þ
and ice-flux response q1 x, t � t1ð Þ could be related using
kinematic-wave theory. In the Nye linear perturbation
theory, the impulsive perturbation to the accumulation rate
was spatially uniform. However, actual variations in accu-
mulation rate may be non-uniform; below, we use the full
nonlinear evolution equation (Eqn (1)) to explore the
sensitivity of ice-sheet evolution at the limited-domain
boundaries to spatial changes in accumulation rate that
may be non-uniform. The accumulation-rate pattern for the
impulse-response calculation is given by the sum of the
steady-state (‘datum’) pattern _b0ðxÞ and a deviation _b1ðx, tÞ
in accumulation rate from the datum state at time t:

_bðx, tÞ ¼ _b0ðxÞ þ _b1ðx, tÞ: ð2Þ
We numerically find the impulse-response function for the
impulse described by

_b1ðx, tÞ ¼ b�ðxÞ� t � t1ð Þ ð3Þ
at a time t1, where the spatial function b� is the ice-
equivalent thickness (m) added by the impulse �(t – t1) (a
Dirac delta function; e.g. Arfken and Weber, 1995, p. 81).
The total volume added to the left side of the domain at time
t1 by this impulse in Eqn (3) is

BL t1ð Þ ¼
Z xdiv

xL

Z t1þ�t=2

t1��t=2
W ð�Þb�ð�Þ� t � t1ð Þ dt d�

¼
Z xdiv

xL
b�ð�ÞW ð�Þ d�:

ð4Þ

Equivalent expressions exist for the right side of the domain.
After receiving this impulsive addition of volume, the ice
sheet must evacuate an equal volume of ice over time in
order to return to its original steady state. Time is discretized
in units of �t, so the average rate of addition of new volume
to the left side of the limited domain in the time-step �t that
includes time t1 is _BL t1ð Þ given by

_BL t1ð Þ ¼ BL t1ð Þ
�t

: ð5Þ

In general, our impulse-response functions FL(t – t1) for ice
flux at the left side of the domain and FR(t – t1) at the right
side of the domain are causal time-delay filters (e.g.
Gubbins, 2004) determined by the ice-sheet response from
the time t1 when the perturbation was applied to the time
t1 +TL or t1 +TR when the ice thickness at the boundary
returns to within a specified threshold of the original steady-
state value. For example, our chosen thickness threshold was
10�4b�. Each impulse-response function is then normalized
so that it integrates to unity over its length Tb

L or Tb
R.

In Section 3.1.2, we apply these concepts to two types of
mass-balance perturbations _b1ðx, tÞ, and each type will have

its own impulse-response functions. The first type evaluates
response to spatially distributed accumulation-rate changes
over the domain, while the second type evaluates flux
changes due to divide migration. There is a third term that is
prescribed to account for changes in ice flux through the
limited-domain boundary that are caused by processes
external to the limited domain, such as ice-shelf loss, sea-
level change or ice-stream activity.

2.3.3. Boundary values for the limited-domain model
Third, we calculate the time-dependent ice fluxes QL(t) and
QR(t) at the left and right limited-domain boundaries in
response to the impulse in Eqn (3) where

QLðtÞ ¼ q xL, tð Þ ð6aÞ

QRðtÞ ¼ q xR, tð Þ: ð6bÞ
Steady-state ice flux q0ðxÞ in a flowband at time t0 is given
by

q0ðxÞ ¼ q0 x0ð Þ þ
Z x

x0

_b0ð�ÞW ð�Þd�, ð7Þ

where q0(x0) is the initial ice flux at any position x0. When x
in Eqn (7) is at a limited-domain boundary, we calculate ice-
flux deviations from this known steady-state value at later
times.

The time-dependent ice flux QL(t) at the left limited-
domain boundary (Eqn (6a)) comprises this steady-state flux
q0(xL) and three flux-variation terms, which are introduced
below:

QLðtÞ ¼ q0ðxLÞ þ�Qb
L ðtÞ þ�Qdiv

L ðtÞ þ�Qext
L ðtÞ: ð8Þ

Again, we present only equations for the left side of the
domain at xL. However, equivalent equations apply on the
right boundary at xR. The first flux variation �Qb

L ðtÞ
accounts for variations in accumulation rate and ice flow
that originate within the limited domain, in response to a
time series of volume changes BLðtÞ in Eqn (4), filtered
through an impulse-response function Fb

L t � t1ð Þ. At the left
boundary, the flux response �Qb

L ðtÞ to a generic history of
volume changes BLðtÞ can be expressed by the convolution

�Qb
L ðtÞ ¼

Z t

t�tbL
_BLðtÞFb

L ðt � tÞ dt

¼
Z Tb

L

0

_BLðt � tÞFb
L ðtÞ dt ¼ _BL � Fb

L

� �
ðtÞ,

ð9Þ

where the notation (g*f )(t) denotes the convolution of a
function g(t) with a filter f(t). This impulse-response function
Fb
L ðt � t1Þ characterizes the response, at the left limited-
domain boundary, to an accumulation-rate impulse affecting
the full domain; however, its role is to evacuate from the
limited domain just the volume BLðtÞ (Eqn (4)) that
accumulates within the limited domain itself at each time
t1. It evacuates each volume BLðt1Þ through the boundary xL
over time, starting at time t1, when volume BLðt1Þ was
deposited, and finishing at time Tb

L later. Considering the
contributions at time t from all previous times, the integral in
Eqn (9) starts at t � Tb

L because volume perturbations BLðt1Þ
from all previous times t < t � Tb

L have been completely
expelled by time t. The surface in the limited domain can
return to its initial steady-state configuration when the
climate returns to its original steady state, because all
additional volumes due to mass-balance variations, and only
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those additional volumes, have been exported. A similar
expression holds for the right-side boundary. The numerical
solution of the convolution in Eqn (9) at time-step k can be
written as

�Qb
L tkð Þ ¼

XN
j¼0

_BL tk � j�tð ÞFb
L j�tð Þ �t, ð10Þ

where N ¼ Tb
L =�t

� �þ 1
� 	

is the number of points in the
impulse-response filter.

The second flux-variation term �Qdiv
L ðtÞ is nonzero if at

some time t > t0 the divide has moved to a new position
xdiv(t). If that new position is to the left of the steady-state
divide position xdiv(t0), then some of the steady-state
accumulation rate _b0ðxÞ that initially contributed to ice flux
through the left boundary is now directed toward the right
boundary of the limited domain. In a manner similar to
Eqn (9), this loss of ice input to the left of the divide can be
expressed as a volume contribution and represented as an
average rate _DLðtÞ during the time-step �t at time t by

_DLðtÞ ¼
Z xdivðtÞ

xdivðt0Þ
_b0ð�ÞW ð�Þ d�: ð11Þ

An equal and opposite ice volume per unit time _DRðtÞ is
now directed toward the right boundary, i.e. since flux is
taken to be negative on the left side of the domain and
positive on the right side of the domain _DRðtÞ ¼ _DLðtÞ. In a
manner similar to Eqn (10), the flux response at the left
boundary at time t following a history of ice-divide
variations can be expressed by the discrete convolution

�Qdiv
L tkð Þ ¼

XN
j¼0

_DL tk � j�tð ÞFdiv
L ðj�tÞ�t, ð12Þ

where Fdiv
L j�tð Þ is the appropriate impulse-response

function.
The third flux-variation term �Qext

L ðtÞ accounts for ice-
sheet evolution that is driven by factors outside the limited
domain. This time series must be prescribed, or else inferred
as part of an inverse problem.

3. RESULTS
The flow model within a limited domain is in general fully
nonlinear, so the accuracy of the solution depends on the
suitability of the impulse-response functions that provide the
boundary conditions. These boundary conditions are linear
in the net accumulation-rate variations within the limited
domain. The full-domain solution and the limited-domain
solution should be equivalent, and we show that this can be
achieved. In the tests presented here, to illustrate our
concepts, we use a limited-domain ice sheet with an initial
ice thickness of 1000m at the left-side boundary (�1125m
initial maximum ice thickness), a flowband width that
is uniform, and a domain that crosses an ice divide with a
limited-domain length of 25 km; this is the surface profile
shown in Figure 3b. The mean accumulation rate is
20 cma–1. The initial steady ice flux leaving the left-side
boundary is –2500m3 a–1 per meter width. The ice divide is
defined as the location with the highest surface elevation.

In an impulse-response calculation, an accumulation-rate
perturbation, as in Eqn (2), has a small magnitude and is
typically assumed to have a spatially uniform distribution
(e.g. Nye, 1960). While an impulse-response function can

well characterize the response of an ice sheet to spatially
uniform variations in climate (e.g. Hooke, 2005, p. 373–375),
actual accumulation-rate variations may not be spatially
uniform. Furthermore, an impulse-response function is asso-
ciated with a specific ice-sheet geometry, and this geometry
may change over time.Wemust quantify the ability of a given
impulse-response function to characterize ice-sheet behavior
as the limited-domain model experiences climate variations
and evolves to different ice-sheet geometries.

In our formulation of boundary conditions for limited-
domain models, four different impulse-response functions
Fb
L ðtÞ, Fb

R ðtÞ, Fdiv
L ðtÞ and Fdiv

R ðtÞ are required to control ice-
flux variations across the boundaries of the limited domain
from accumulation-rate variations (Eqn (9)) and from ice-
divide migration (Eqn (11)). We illustrate the sensitivity of
the solution for ice-sheet evolution to different representa-
tions of the four impulse-response functions in this problem,
using the particular limited-domain model described in the
Appendix. For the calculations of ice-sheet evolution below,
we set the external-flux forcing term �QextðtÞ ¼ 0 (Eqn (7))
on both sides of the limited domain.

3.1. Sensitivity to spatial extent of an accumulation-
rate perturbation

3.1.1. Full domain vs limited domain only
The spatial extent over which the accumulation-rate vari-
ations are distributed will affect the response of the ice
sheet. For example, accumulation rate may change uni-
formly over the entire ice sheet, or only over the limited
domain. Figure 4a shows the limited-domain boundary
response functions associated with a uniform perturbation
that extends only over the limited domain, while Figure 4b
shows the boundary response functions associated with a
uniform perturbation that extends over the full domain; all
response functions correspond to the right-side boundary of
the limited-domain ice sheet in Figure 3b. While an

Fig. 4. (a) Ice-flux impulse-response function for an impulsive
uniform accumulation-rate perturbation that extends spatially only
over the limited domain. (b) Ice-flux response function for an
impulsive uniform accumulation-rate perturbation that extends over
the full domain. Response functions in (a) and (b) correspond to the
right-side boundary of the ice sheet in Figure 3b. (c) Ramped step
changes in accumulation rate of 5% from the steady-state value of
20 cma–1. (d) Divide-thickness response following accumulation-
rate changes in (c) in limited-domain model, using filters in (a) and
(b) compared with full-domain model.
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accumulation-rate perturbation that extends only over the
limited domain is improbable, Figure 4 demonstrates the
sensitivity of the impulse-response function to the spatial
extent of the perturbation.

The boundary ice-flux response function in Figure 4a
differs from the response function in Figure 4b because the
response function depends on the spatial extent of the
impulsive perturbation. Figure 4d shows that correct ice-
sheet evolution can be achieved if the correct response
function is used in the limited-domain model calculations
in response to the step change in accumulation rate shown
in Figure 4c. If actual accumulation-rate perturbations
extend only over the limited domain, the response functions
in Figure 4a will be appropriate. However, in reality, we
expect that actual spatial and temporal variations in
accumulation rate will occur over the full span (or a
significant portion of the full span) of the ice sheet, and will
not be restricted to the arbitrary extent of our limited
domain. In the subsequent sensitivity tests and results shown
here, we use impulse-response functions associated with
accumulation-rate perturbations that extend over the entire
span of the full-domain model.

3.1.2. Sensitivity to narrow vs broad perturbations
The spatial pattern of the impulsive perturbation in accumu-
lation rate over an ice sheet will affect the response time.
While Jóhannesson and others (1989) showed that spatial
variations in the accumulation-rate perturbation have an
insignificant effect on the total change in volume, we show
that spatial variations in the accumulation-rate perturbation
can significantly affect the impulse-response function at
the limited-domain boundaries, and actual variations in

accumulation rate across the limited domain may not be
spatially uniform. We compare the impulse-response func-
tions associated with accumulation-rate perturbations
_b1ðx, tÞ across the full domain that are (1) spatially uniform
across the full domain, (2) linearly varying across the
domain, and (3) strongly peaked at the divide. A delta
function can be represented as the limit of a Gaussian
distribution (e.g. Arfken and Weber, 1995, p. 81),

�ðxÞ ¼ lim
�!0

1
�

ffiffiffi
�

p exp � x2

�2

� �
, ð13Þ

where � is the width of the Gaussian distribution, and �! 0
in the definition of the delta function.

We evaluate Gaussian functions over the span of the full-
domain ice sheet from the divide to the terminus L (m) with
� ¼ 0:5L and � ¼ 0:1L (by definition, � ¼ 0:1L gives a
narrower peak). Figure 5a shows the shapes of the four
accumulation-rate perturbations, Figure 5b shows the
impulse-response functions and Figure 5c shows the step
response at the limited-domain boundary. Previous glacio-
logical analyses use the step response (e.g. Nye, 1960),
where integration by parts shows that the step response is the
temporal integral of the impulse-response function (e.g.
Gubbins, 2004). Each accumulation-rate perturbation in
Figure 5a adds the same total ice volume impulsively over
the full domain. By definition, the impulse-response func-
tion integrates to unity over the full response time. The
response time � IR is an e-folding time, which is the time to
reach (1 – e–1) of the new equilibrium value. Figure 5c shows
that the re-equilibration of the ice sheet to a narrow spike in
accumulation rate is very different from the re-equilibration
of the ice sheet to a uniformly distributed accumulation-rate

Fig. 5. (a) Accumulation-rate perturbations that are spatially uniform (dashed line), linearly varying (bold line), a Gaussian function (Eqn (13))
with �=0.5L (thin line), and with �=0.1L (gray line) where L is the half-span of the full domain, from the divide to the terminus; these are
examples of the perturbation term _b1ðx, tÞ in Eqn (2), and all perturbations add the same ice volume to the full domain at one time-step. The
vertical line marks the limited-domain boundary on the right side of the limited domain (as in Fig. 3b) where the impulse-response functions
are evaluated. (b) Boundary impulse-response functions corresponding to the perturbations in (a). The impulse-response time � IR is the
e-folding time for the step-response curves in (c), given by the integrals of the impulse-response functions. (d) Ice-sheet evolution at the
limited-domain boundary (as in Fig. 3b) from the limited-domain model in response to uniformly distributed accumulation rate in Figure 4c
using the four response functions in (b).
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perturbation. In Figure 5d we show the evolution of surface
elevation at the limited-domain boundary in response to the
accumulation-rate history in Figure 4c. Ice-thickness re-
sponse is influenced by the response function used to
calculate the ice-sheet evolution. When the actual accumu-
lation-rate perturbation is spatially uniform, but an impulse-
response function for a spatially restricted spike perturbation
is used to characterize ice-sheet behavior, ice added to the
domain is evacuated too quickly.

In reality, it is unlikely that the spatial pattern of
accumulation-rate perturbations across the limited domain
will be as spatially restricted as a spike function. In addition,
ice-sheet evolution is determined primarily by long-term
spatially averaged changes in accumulation rate, and not by
localized, even if large in magnitude, excursions in the
accumulation rate. Therefore, to calculate the impulse-
response function Fb

L ðt � t1Þ, in Eqns (9) and (10), we use a
spatially uniform accumulation-rate perturbation, i.e., in
Eqn (3), _b�ðxÞ ¼ b�.

However, changes in ice input directed toward one
boundary or the other due to ice-divide migration are better
characterized by a localized function _b�ðxÞ in Eqn (3).
Therefore, to calculate the impulse-response functions
Fdiv
L ðt � t1Þ and Fdiv

R ðt � t1Þ, in Eqn (12), we use an accumu-

lation-rate perturbation _b1ðx, tÞ that is a peaked function with
�=0.1L (Eqn (13)) centered at the initial divide.

3.2. Sensitivity to ice-sheet geometry
Jóhannesson and others (1989) showed that the volume
response time �V for an ice sheet could be estimated as the
ratio of the maximum ice thickness to the ablation rate at the
terminus. Therefore, the impulse-response function is de-
pendent on the ice thickness and is associated with specific

ice-sheet geometry. For example, our impulse-response
functions should produce longer response times for thicker
ice sheets. Since the ice thickness and the ice-divide
position can change in a transient problem, we must take
into account how this will affect the impulse-response
functions used to characterize ice-sheet behavior.

Figure 6b shows the impulse-response functions, and
Figure 6c shows the step response at the right-side boundary
of the limited domain (marked in Fig. 6a), for the ice sheets
in Figure 6a with initial ice-surface elevation at the left-side
limited-domain boundary of 1000, 800 and 1200m. We
calculate the evolution of our standard �1000m ice sheet in
response to the accumulation-rate history in Figure 4c, but
we use impulse-response functions for an ice sheet that is
200m thicker (�1200m), and for an ice sheet that is 200m
thinner (�800m), than the standard ice sheet shown in
Figure 6d. All solutions are similar.

3.3. Efficient transient calculations
To accurately calculate ice-sheet evolution with a limited-
domain model, we must prescribe the accumulation-rate
history _bðx, tÞ over the limited domain, and we must
prescribe the histories �Qext

L ðtÞ and �Qext
R ðtÞ of externally

forced changes in ice flux on the limited-domain bound-
aries. The accumulation-rate and external-forcing histories,
together with the impulse-response functions, contain all of
the information needed to calculate ice-sheet evolution
within a limited domain. If the correct impulse-response
functions are used at the limited-domain boundaries, the ice
sheet can thicken and thin in exactly the same way as a full-
domain model.

For computational efficiency, we use a single set of
impulse-response functions throughout the calculation for
ice-sheet evolution. While these simple limited-domain

Fig. 6. (a) Three steady-state surfaces with elevations of 800m (bold line), 1000m (dashed line) and 1200m (thin line) at the left edge of the
domain (at –20 km along flowband). The dots mark the right boundary, where the time-varying values in the lower panels are obtained.
(b) Impulse-response functions and (c) step response to a uniform accumulation-rate perturbation across a full-domain model for the three
ice-surface elevations from (a). The impulse-response time � IR is the e-folding time. (d) Surface evolution at the right boundary of a limited-
domain model with surface elevation of �1000m, in response to uniformly distributed accumulation-rate changes in Figure 4c, using the
three response functions in (b). The dashed line is the correct solution.
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calculations using response functions are at least five times
faster to compute than the same full-domain calculation,
there would be less of a computational advantage if the
response functions were recalculated more frequently.
Given other uncertainties in the problem, and given our
objective of an efficient calculation, this is a reasonable
approach. Therefore, we assume that an impulse-response
function generated with a spatially uniform accumulation-
rate perturbation is appropriate to control ice-flux variations
due to accumulation-rate variations and we use an impulse-
response function generated with a narrow Gaussian-
function accumulation-rate perturbation to control ice-flux
variations at the boundaries associated with ice-divide
migration. With these assumptions, a limited-domain model
may not evolve in exactly the same way as a full-domain
model, but it will evolve in a physically similar way
compared to the full-domain model. In general, deciding
when to recalculate impulse-response functions so that they
suitably represent ice-sheet response as the ice sheet evolves
will be a problem-specific consideration.

If an impulse-response function associated with a
spatially uniform perturbation is used to obtain boundary
conditions for ice-volume variations that are not strictly
uniform, the ice sheet will thicken and thin in a way that is
similar, but not identical, to a full-domain model. In
Figure 7a, the accumulation-rate history varies in space and
time across the limited domain, but remains at the steady-
state values elsewhere. We chose this accumulation-rate
history in order to isolate how changes in the spatial
pattern of accumulation rate influence a limited-domain
solution found with impulse-response functions that corres-
pond to a spatially uniform accumulation-rate perturbation;
in this case, the impulse-response functions were not
updated to account for changes in the actual pattern of
accumulation rate or ice thickness over time. Figure 7b
shows the ice-surface evolution, and Figure 7c shows the

ice-divide migration found with the limited-domain model
and found with a full-domain model. The solutions from
the limited-domain model and from the full-domain model
are not exactly the same because the impulse-response
functions used in the limited-model solution correspond
only to a uniform perturbation in accumulation rate,
whereas the actual accumulation-rate perturbations are
spatially variable. This error is minor compared to
uncertainties in the actual accumulation rate and exter-
nal-flux forcing histories.

4. DISCUSSION

4.1. Nonlinear approach
Impulse-response functions have traditionally been associ-
ated with studies in which the ice-flow equations were
linearized (e.g. Nye, 1960, 1965; Hindmarsh, 1996;
Nereson and others, 1998). Results were therefore applic-
able only to small changes in surface elevation or ice flux.
Those impulse-response functions described the linearized
evolution of the entire glacier profile following a small but
uniform mass-balance impulse.

Our approach is different; the full nonlinear form of the
equations is always used, both for a full-domain model
when determining the impulse responses at the limited-
domain boundaries, and for the limited-domain model when
solving for the surface and ice-flow evolution within it. We
assume linearity only in how and when the boundary
conditions release the variations in ice volume that collect
inside the limited domain (e.g. if twice as much extra ice
collects in a given year, it will be released through the
boundaries on the same timetable, but at twice the amount
in each subsequent time-step). While the impulse-response
functions are found numerically as the response of a
nonlinear model to small perturbations, the (nonlinear)
model itself is not restricted to small changes in accumu-
lation rate, ice thickness or flux.

4.2. Estimating external forcing
A realistic ice sheet will experience variations in ice flow
and climate across its entire extent (not just in a limited
portion near the ice divide), and those changes that originate
external to the limited domain may dominate the long-term
evolution of the ice sheet. For example, on glacial–
interglacial timescales, ice-sheet interiors respond to ex-
ternally forced changes in global ice volume. In particular,
ice-sheet margins can respond directly to changes at the ice/
ocean boundary by advancing or retreating, and this affects
ice thickness and ice-divide position in the interior (e.g.
Payne and others, 2004). Since the climate history pre-
scribed on the limited domain has no information about
externally forced changes in ice flux at the limited-domain
boundaries (beyond the impact of a spatially uniform _b1),
variations in external-flux forcing �Qext

L ðtÞ and �Qext
R ðtÞ

must be prescribed.
Figure 8a shows an accumulation-rate history over the

full extent of the ice sheet that changes through time from a
spatially uniform pattern, to a pattern that has a strong
spatial gradient across the divide; the variation across the
limited domain is the same as in Figure 7a. In this case, the
accumulation-rate variations outside the limited domain are
an external forcing that also drives divide migration.
Figure 8b shows the ice-thickness evolution at the right-side

Fig. 7. (a) Accumulation-rate history that varies in space and time
across the limited domain but remains constant outside the limited
domain. (b) Ice-surface evolution at the right-side boundary of the
limited domain (as in Fig. 3b) from the full-domain model (dashed
line), and from the limited-domain model (solid line) using impulse-
response functions that assumed uniform changes outside as well as
inside the limited domain. (c) Ice-divide position from the limited-
domain model (solid line) and from the full-domain model
(dashed line).
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boundary (as in Fig. 3b) and Figure 8c shows the ice-divide
migration for a full-domain model, for a limited-domain
model using the incorrect external forcing, �QextðtÞ ¼ 0,
and for a limited-domain model using the correct external
forcing. Figure 8b and c confirm our expectation that the
impulse-response functions alone cannot provide enough
information to facilitate accurate ice-sheet evolution when
there are externally forced ice-flux variations. Even in this
simple case with relatively small changes in accumulation
rate outside the limited domain, additional information that
can describe the correct variation in external forcing is
required for the limited-domain model to produce the
correct ice-sheet history.

The correct value of �QextðtÞ at the limited-domain
boundaries over time may come directly from a separate
full-model calculation (e.g. output from a 3-D model), or
may be estimated using a proxy for externally forced
perturbations (e.g. changes in sea level). However, it may
be that the history of external forcing is largely unknown.
We suggest that in future work, it may be possible to infer
the change in ice flux due to external forcing at the limited-
domain boundaries as part of an inverse problem, if internal-
layer architecture has retained that information. Specifically,
an efficient limited-domain model for transient ice flow,
with well-posed boundary conditions following the pro-
cedures described here, could be used to infer histories of
ice thickness, of ice-divide position, of accumulation rate
and of external forcing that are consistent with internal-layer
architecture and the modern ice sheet (Koutnik, 2009).

5. CONCLUSIONS
A limited-domain model can efficiently and realistically
calculate transient ice flow near an ice divide; we have
demonstrated that this can be a well-posed problem. There
are two key insights that promote efficiency and accuracy in
this problem. First, rather than calculating ice-sheet evolu-
tion using a limited-domain model that is nested in a full-
domain model that must be run for the entire duration of the
experiment, we embed the limited-domain model only at
specific times in the calculation. Second, we use the full-
domain model only to provide information about character-
istic behavior of the full ice sheet, not to provide the exact
value of the required boundary conditions. We characterize
the behavior of a full ice sheet using impulse-response
functions calculated from a full-domain model. While our
results directly support modeling ice flow in the vicinity of
ice-core sites near ice divides, our approach using response
functions to set appropriate boundary conditions on a
limited-domain model may also apply to other problems
where the response at the boundaries can be characterized
using either a simple function, or a separate model, or
available data.

We have shown how the impulse response at the
boundaries of a limited-domain ice sheet depends on the
spatial extent and on the spatial pattern of the accumulation-
rate perturbation, in addition to the ice-sheet geometry.
Therefore, in the calculation of ice-sheet evolution within a
limited domain, different boundary impulse-response func-
tions are needed to distinguish ice-sheet response to
variations in accumulation rate from response to ice-divide
migration. For variations in accumulation rate we calculate
the impulse response of a nonlinear full ice-sheet model to a
spatially uniform accumulation perturbation across the full

domain. For ice-divide migration, we calculate the response
of the same model to an impulsive and spatially restricted
perturbation in accumulation rate centered near the divide.
The response histories at the limited-domain boundaries are
extracted to form the left and right boundary impulse-
response functions. In this paper, we have illustrated how
these specific response functions can well characterize ice-
sheet evolution in a limited-domain model. Future work
related to a specific portion of Greenland or Antarctica could
explore the sensitivity of the limited-domain model results to
different calculations of the impulse-response functions
depending on the spatial variation in the accumulation
perturbation and changes in ice-sheet response over time.

The response functions can produce realistic ice-sheet
evolution only for variations in accumulation rate that
originate within the arbitrary bounds of the limited domain,
or are uniform across the entire ice sheet. Because long-term
evolution near an ice-sheet center can be strongly influ-
enced by variations in climate and ice flow over the entire
ice sheet, accurate ice-sheet evolution with a limited-
domain model requires an accurate estimation of externally
forced changes in ice volume. An estimate of this external
forcing could come from an independent 3-D model (similar
to a nesting scheme), or we could solve an inverse problem
to find histories of accumulation rate, ice thickness, ice-
divide position and external forcing that are consistent with
internal-layer architecture and the present-day ice sheet
(Koutnik, 2009); this is a focus of our future work. By making
a transient limited-domain ice-flow model well-posed, we
have created an efficient approach to an inverse problem

Fig. 8. (a) Accumulation-rate history that varies in space and time
across the full domain; the non-uniform variations outside the
limited domain produce external forcing. This history is used to
calculate ice-sheet evolution in the full-domain model; the portion
covering the limited domain (bounds shown with white lines) is
used to calculate ice-sheet evolution in the limited-domain model,
with impulse-response functions that assumed uniform variations
outside the limited domain. (b) Ice-surface evolution over time at
the right-side boundary of the limited domain (as in Fig. 3b)
calculated with the full-domain model (dashed line), the limited-
domain model with no information about external forcing (solid
line) and the limited-domain model with the correct external-flux
forcing (gray line). (c) Ice-divide position. The solutions from the
limited-domain model and from the full-domain model are the
same when the correct external-flux forcing �QextðtÞ is prescribed.
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that can use data across a limited portion of the ice sheet,
and would otherwise be computationally expensive because
the forward problem must be run many times to solve the
inverse problem.
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APPENDIX: LIMITED-DOMAIN MODEL
To illustrate our points about appropriate boundary condi-
tions, we choose to use a simple flowband model, which is
a 1.5-D representation of the ice surface and a 2.5-D
representation of ice flow, where the boundaries are
defined by two nearby flowlines and the volume is
bounded vertically beneath these flowlines. Figure 9 illus-
trates the geometry of a typical flowband. Variations in the
bed topography B(x) and in the flowband width W(x) along
the flowband are specified. We assume that glacial-
isostatic, tectonic or erosional processes do not change
the bed topography over time. The ice thickness h(x,t) is
related to the ice-surface elevation by h(x,t) = S(x,t) –B(x).
When the initial ice surface at time t0 is estimated using a
steady-state surface calculation, the required boundary
conditions are (1) the ice-surface elevation S0(x0,t0) at one
point x0 at the first time-step, (2) the ice flux q0(x0,t0)
entering or leaving the domain at one boundary x0 at time
t0, (3) the spatial and temporal accumulation rate _bðx, tÞ,
and (4) externally forced changes in ice flux; all of these
values must be known, estimated or solved for as a part of
an inverse problem.

By integrating Eqn (1) from x0 where ice flux is specified,
the ice flux at the end of the domain xend can be represented
kinematically by

q0 xend, tð Þ ¼ q0 x0, tð Þ

þ
Z xend

x0

�
_b0ðx, tÞ � _hðx, tÞ � _mðx, tÞ

�
W ðxÞ dx,

ðA1Þ
where q0(x0,t) is the history of ice flux entering or leaving the
flowband domain, _hðx, tÞ is the rate of change in ice
thickness, and _mðx, tÞ is the basal melt rate.

Dynamically, the flux of ice passing through a cross-
sectional areaW ðxÞ�hðx, t ) at any point x and at any time t,
is related to the depth-averaged horizontal velocity uðx, tÞ in
that cross section by

qðx, tÞ ¼W ðxÞhðx, tÞuðx, tÞ: ðA2Þ
We can calculate uðx, tÞ using the SIA (e.g. Cuffey and
Paterson, 2010, p. 322). The SIA is a simplifying assumption
that can be applied in cases where the ice thickness h(x,t) is
much smaller than any horizontal length scale L over which
ice-sheet properties such as bed topography, ice thickness,
velocity and sliding fraction change significantly; the SIA is
applicable where derivatives of velocities and stresses with
respect to x are generally much smaller than derivatives with
respect to z. The constitutive relationship for ice flow (Glen,
1955) using the SIA is

_"xz ¼ A T ðx, z, tÞð Þ�nxz , ðA3Þ
where _"xz is the simple-shear strain rate along a horizontal
plane, A(T(x,z,t)) is the temperature-dependent ice-softness
parameter, �xz is the component of the shear-stress tensor
acting horizontally along a horizontal plane, and we choose
the flow law exponent n=3 (e.g. Cuffey and Paterson, 2010,
p. 58). The shear component of the strain-rate tensor along a
horizontal plane is

_"xz ¼ 1
2

@u
@z
þ @w

@x

� �
: ðA4Þ

Following the SIA, the derivatives of velocities with respect
to x are negligible, giving 2 _"xz � @u=@z (e.g. Cuffey and

Paterson, 2010, p. 303). Using the flow law given by
Eqn (A3) for the SIA, and assuming that the temperature is
uniform with depth for each position in x, T(x,z,t) =T(x,t), the
depth-averaged horizontal velocity can be found by inte-
grating @u=@z twice over depth z,

uðx, tÞ ¼ 2AðT ðx, tÞÞ
ðn þ 2Þ ð�gÞn dS

dx

���� ����n�1 � dS
dx

� �
hðx, tÞnþ1, ðA5Þ

where � is density, g is gravitational acceleration, Sðx, tÞ
is the ice-surface elevation, and hðx, tÞ is the ice
thickness.

If the ice temperature is not uniform with depth at each
location, we can solve for an effective isothermal softness
parameter eAðx, tÞ that gives the same depth-averaged
velocity and ice flux as a depth-varying temperature-
dependent softness parameter AðT ðx, z, tÞÞ. We calculate
the effective isothermal value by equating the depth-
averaged ice velocity uðx, tÞ with the actual softness profile
AðT ðx, z, tÞÞ,

uðx, tÞ ¼2A0 �g
@Sðx, tÞ

@x

� �n

� hðxÞnþ1
Z 1

0

Z bz
0
exp � Q

RT b�, t� �
0@ 1A 1� b�� �n

db� dbz ,
ðA6Þ

to the depth-averaged velocity uðx, tÞ from Eqn (A5), and
solving for A(T(x,t)), given as here as eAðx, tÞ,

eAðx, tÞ ¼ ðn þ 2Þ
Z 1

0

Z bz
0
A T x, b�, t� �� �

1� b�� �n
db� dbz ,

ðA7Þ
where bz is a nondimensional height above bedrock,
defined by

bz ¼ z � BðxÞ
Sðx, tÞ � BðxÞ : ðA8Þ

Using Eqn (A5) for the depth-averaged velocity, but with
the effective isothermal softness parameter from Eqn (A7),

Fig. 9. Geometry of an ice-sheet flowband with a limited domain.
The change in flux from steady state must be calculated on the
left side qðxL, tÞ and on the right side qðxR, tÞ of the domain (as
in Fig. 1), and the spatial and temporal history of accumulation
rate _bx, t is prescribed as a boundary condition. For this model,
the bed topography B(x) and the width function W(x) do not
change in time.

Koutnik and Waddington: Transient ice flow using a spatially limited domain 1019



and then by representing average velocity uðx, tÞ in terms
of ice flux qðx, tÞ and ice thickness hðx, tÞ using Eqn (A2)
and hðx, tÞ ¼ Sðx, tÞ � BðxÞ, we can rearrange this equation
to formulate a nonlinear ordinary differential equation for a
steady-state ice surface,

dS0 x, t0ð Þ
dx

ðn þ 2Þq x, t0ð Þ
2eA x, t0ð Þð�gÞnW ðxÞ S0 x, t0ð Þ � BðxÞð Þnþ2

" #1=n

:

ðA9Þ

We use this ice-surface profile S0(x,t0) as the initial
condition to solve for the ice-thickness evolution h(x,t) that
we find by solving Eqn (1); therefore, all the values used to
solve Eqn (A9) apply at the initial time, t= t0. While our
study is in the vicinity of an ice divide, and while the SIA
may inadequately represent the velocity field near the
divide, the SIA can adequately describe ice-surface
evolution and ice-divide migration (e.g. Hindmarsh,
1996). However, a different representation of the velocity
field could also be used. For example, to capture ice-divide
flow we could use a full Stokes model, or we could use
velocity shape functions based on full-stress flow solutions
(Nereson and Waddington, 2002). In addition, we could
couple our mechanical model to a thermal model and
investigate the response to temperature forcing; because
that is not the focus of this work, we choose to use a simple
SIA model to demonstrate application of the well-posed
boundary conditions.

We use the finite-volume method (FVM; e.g. Patankar,
1980; Versteeg and Malalasekera, 2007), also known as the
control-volume method, to discretize our domain in order to
find a numerical solution to Eqn (1). In the FVM solution, ice
thickness is evaluated at each volume center, and ice flux is
evaluated across each volume edge.

Following Patankar (1980, p. 57), we use a fully implicit
scheme, and we have verified that our fully implicit solution
matches an appropriately time-stepped fully explicit solu-
tion. In addition, we invoke under-relaxation (e.g. Patankar,
1980, p. 67) to stabilize our procedure to solve a nonlinear
problem that has been linearized between iterative calcula-
tions of updates to the solution values.

The transient problem is nonlinear because the ice flux
q (x,t) in Eqn (1), calculated dynamically using Eqn (A2) with
Eqn (A5), is a nonlinear function of ice thickness h (x,t) and
surface slope dS/dx; the ice thickness and surface slope are
the values we are trying to find. To address this nonlinearity,
we use an iterative procedure and we stop iterations when
changes in the solution are smaller than a threshold value
(e.g. Patankar, 1980, p. 47; Waddington, 1982, p. 239; Van
der Veen, 1999, p. 226); here we use a threshold value
of 10–6m.

Full-domain model
As sketched in Figures 1 and 3b, the limited-domain ice sheet
is embedded in a full-domain ice sheet. Our limited-domain
model crosses an ice divide, and thereforemust be embedded
in a full domain that extends off both sides of the divide. Any
ice-flow model could be used to embed (extend) the limited
domain, but here we use the numerical calculation for a
steady-state ice surface given by the solution to Eqn (A9). In
this model we can specify variations in bed topography and in
mass-balance rate across the entire domain. However, these
values may be unknown. If we do not have a good estimate of
the bed topography and the flow patterns, we can uniformly
extend the bed elevation and the flowband width across the
full domain using their values at the limited-domain bound-
aries. If we have a realistic estimate of the mass balance
outside the limited domain then we can use these values.
Here we chose amass-balance distribution given by a zone of
uniform accumulation rate c over part of the domain, and a
zone of uniform ablation rate a over the rest of the domain,
with the two zones separated at the equilibrium line R; this
follows the analytical solution for an ice-sheet surface given
by Paterson (1972) and allowed us to compare our numerical
model to this analytical model. We prescribe a ratio of
accumulation rate to ablation rate of c/a=0.2. However, this
could be any ratio, and in different applications a large
ablation rate may be most realistic (e.g. a calving margin in
Antarctica). For this mass-balance pattern, the solid curve in
Figure 3b shows a limited-domain surface that crosses an ice
divide with a maximum thickness of �1125m and a limited
extent of �25 km. The dashed curve in Figure 3b shows the
extension of this limited surface to a full domain that includes
both ice-sheet termini and has a full extent of �70 km.

In a model that includes an ice-sheet terminus, the ice
flux and the ice thickness approach zero at the terminus.
This means that the velocity at the terminus will also
approach zero if we follow Eqn (A5). As pointed out by Nye
(1960, 1963a,b), this results in the non-physical situation of
an immobile terminus; in reality the terminus should be able
to advance and retreat. To address this problem, the region
near the terminus can be replaced by a wedge with a
defined angle to the surface (e.g. Nye, 1963a,b; Wadding-
ton, 1982, p. 247). Mass conservation and the flow law are
satisfied separately in the wedge, which we represent by one
gridcell at the end of the domain. While Lam and Dowdes-
well (1996) suggested that an adaptive-grid scheme should
be used at the terminus in order to best represent ice-sheet
behavior in this type of numerical model, we are solving for
the full-domain response to small perturbations only. As a
result, the length changes are small, and our simple terminus
treatment adequately captures terminus variations.
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