
Identifying Dynamically Induced Variability in Glacier Mass-Balance Records

JOHN ERICH CHRISTIAN

Department of Earth and Space Sciences, University of Washington, Seattle, Washington

NICHOLAS SILER

Scripps Institution of Oceanography, La Jolla, California

MICHELLE KOUTNIK AND GERARD ROE

Department of Earth and Space Sciences, University of Washington, Seattle, Washington

(Manuscript received 9 February 2016, in final form 20 June 2016)

ABSTRACT

Glacier mass balance provides a direct indicator of a glacier’s relationship with local climate, but internally

generated variability in atmospheric circulation adds a significant degree of noise to mass-balance time series,

making it difficult to correctly identify and interpret trends. This study applies ‘‘dynamical adjustment’’ to

seasonal mass-balance records to identify and remove the component of variance in these time series that is

associated with large-scale circulation fluctuations (dynamical adjustment refers here to a statistical method

and not a glacier’s dynamical response to climate). Mass-balance records are investigated for three glaciers:

Wolverine andGulkana in Alaska and South Cascade inWashington. North Pacific sea level pressure and sea

surface temperature fields perform comparably as predictors, each explaining 50%–60%of variance in winter

balance and 25%–35% in summer balance for South Cascade and Wolverine Glaciers. Gulkana Glacier,

located farther inland, is less closely linked to North Pacific climate variability, with the predictors explaining

roughly 30% of variance in winter and summer balance. To investigate the degree to which this variability

affects trends, adjusted mass-balance time series are compared to those in the raw data, with common results

for all three glaciers; winter balance trends are not significant initially and do not gain robust significance after

adjustment despite the large amount of circulation-related variability.However, the raw summer balance data

have statistically significant negative trends that remain after dynamical adjustment. This indicates that these

trends of increasing ablation in recent decades are not due to circulation anomalies and are consistent with

anthropogenic warming.

1. Introduction

a. Glaciers and climate variability

Variations in climate occur in response to both ex-

ternal forcing and internally generated variability.

External forcings are generally defined as mechanisms

outside of the climate system that change the un-

derlying radiative balance of the planet; such forcings

can be natural (e.g., changes in volcanic or solar ac-

tivity) or anthropogenic (e.g., greenhouse gas and

aerosol emissions and changes in land use) in origin

(e.g., IPCC 2013). Internal variability is also funda-

mental to the climate system and occurs even in the

absence of external forcing; these variations arise as

chaotic fluctuations in oceanic and atmospheric circu-

lation and are integrated by components of the climate

system operating on a range of time scales (e.g., IPCC

2013). Though such variability is essentially stochastic

in nature (e.g., Hasselmann 1976), there are preferred

modes of variability that emerge on interannual to

decadal time scales. A large body of research exists on

these persistent patterns and their origins in the cou-

pled atmosphere–ocean system (e.g., Deser et al. 2010,

and references therein) as well as on the effects of time-

varying atmospheric dynamics on hemisphere-scale

temperature trends (Wallace et al. 1995). Model de-

velopments and increases in computational power over
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the past decade have allowed for improved un-

derstanding of how this internal variability differs from

external forcing. For example, Deser et al. (2012) in-

tegrated an ensemble of identical global climate

models with identical external forcing scenarios, but

with minor perturbations in the initial climate state

between ensemble members. The resulting divergence

among the model integrations can be due only to in-

ternal variability. Deser et al. (2012) demonstrated that

internal variability can dominate over external forcing

in regional climate trends even on multidecadal time

scales (see also Wallace et al. 2015).

Glaciers interact with their local climate via their mass

balance: the accumulation and ablation (i.e., melt) of

snow and ice each year. Worldwide glacier retreat is a

highly visible and widely cited result of a changing cli-

mate. However, glaciers respond not only to external

forcings but also to interannual variability in temperature

and precipitation (e.g., Oerlemans 2001; Roe and Baker

2014) associated with internal climate variability. Large

year-to-year fluctuations can make it difficult to identify

and attribute trends in the global archive of mass-balance

records. However, when combined with other climate

data, the variability itself can yield information about the

large-scale climate processes that drive glacier changes.

For example, Bitz and Battisti (1999) examined correla-

tions between the mass-balance records of several west-

ern North American glaciers and indices of prominent

modes of climate variability, as well as meteorological

data from local to synoptic scales. Their analyses provide

insight into the dynamical links between North Pacific

climate and the targeted glaciers as well as the relevant

differences between the glaciers’ climatic settings. In this

study, we build on these analyses of the signatures of

large-scale climate variability in glacier mass-balance

records, with the added objective of improving the

identification of trends in mass balance.

b. Dynamical adjustment

For any climate record that spans only a few decades,

identifying the effect of anthropogenic forcing can be

problematic; trend estimates may lack statistical signifi-

cance owing to the background noise of interannual

variability. Furthermore, the trends themselves may be

biased by limited temporal or spatial sampling of low-

frequency, internally generated fluctuations (e.g., Casola

et al. 2009;Wallace et al. 2012). ‘‘Dynamical adjustment’’

is a method that seeks to extract the component of the

variance in a climate time series that is attributable to

large-scale atmospheric circulation anomalies (i.e., dy-

namically induced variability) rather than to external

forcing.With this component removed, the adjusted time

series has less variance and may exhibit a different trend.

For example, Wallace et al. (2012) dynamically adjusted

observed surface air temperatures poleward of 408N and

concluded that 0.78C of the ;1.78C warming trend in

wintertime temperatures from 1965 to 2000 was dynam-

ically induced. With adjusted trends unbiased by internal

effects, such analyses can clarify the anthropogenic signal

in a target climate time series.

A number of studies in recent decades have developed

and used this method. Although not all were referred to

as dynamical adjustment, they nonetheless established

the objective of evaluating the role of dynamically in-

duced variability. These studies analyzed surface-

temperature records using a variety of approaches,

including regression of the temperature fields them-

selves (Wallace et al. 1995), with established climate

indices (e.g., Hurrell 1996; Bitz and Battisti 1999;

Thompson et al. 2000) and with sea level pressure (SLP)

fields (Thompson et al. 2009). More recent studies have

adjusted additional climate variables such as snowpack,

air temperature, and hurricane activity (Smoliak et al.

2010; Wallace et al. 2012; Smoliak et al. 2015) and are

based on the method of partial least squares (PLS) re-

gression (see Abdi 2010). PLS regression decomposes a

set of predictor variables into components of variability

that are optimized to explain the variability in a variable

of interest (the predictand). In the context of dynamical

adjustment, the predictors are grid points of a time-varying

field [e.g., sea level pressure and sea surface temperature

(SST)] that is assumed to have a dynamical link to the

predictand (e.g., regional temperature, snowpack). We

present the PLS regression algorithm in section 3.

Note that in our context, the term ‘‘dynamical adjust-

ment’’ should not be confused with the dynamics of a

glacier’s geometrical adjustment to climate changes. In

this study, dynamical adjustment will refer only to the

methodology described above. We apply a PLS-based

dynamical adjustment to glacier mass-balance records

using SLP and SST, independently, as predictors. SLP has

been used previously for dynamical adjustments (Smoliak

et al. 2010;Wallace et al. 2012; Smoliak et al. 2015), and its

variability is awidely used indicator of circulation changes

on a range of time scales. SLP patterns control the di-

rection and magnitude of near-surface winds and thus are

strongly linked to variability in surface temperature and

precipitation (e.g., Wallace and Hobbs 2006). This re-

lationship makes SLP a clear candidate for dynamically

adjusting glacier mass-balance records.

SST is related to glacier change through a number of

pathways. It is established that the onshore flow of

warm, moist marine air masses during storms links SSTs

to snowpack in coastal mountains (Casola et al. 2009)

and, by extension in this study, to the accumulation/

winter balance of glaciers in western North America.
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Furthermore, SST and SLP variability are closely re-

lated via dynamical coupling between the ocean and

atmosphere. For example, Deser and Phillips (2009)

showed that SST variability is related to recent decadal

trends in North Pacific atmospheric circulation. At the

same time, SST also responds to higher frequency at-

mospheric pressure variations, as demonstrated by

Johnstone and Mantua (2014), who found that the

leadingmode ofmonthly variability in North Pacific SST

resembles a lagged response to the 11-month running

mean of SLP variability. The coupling of atmospheric

pressure and ocean temperature on time scales from

months to decades motivates our investigation of both

SLP and SST datasets as predictors for glacier mass-

balance variability.

2. Study area and datasets

a. Target glaciers

We focus our study on the mass-balance records of

three U.S. Geological Survey (USGS) benchmark gla-

ciers: Wolverine Glacier in Alaska’s Kenai Range,

Gulkana Glacier in the Alaska Range, and South Cas-

cade Glacier in Washington State’s Cascade Range

(Fig. 1). These glaciers have the longest continuous

mass-balance records in North America, with winter

balance Bw, summer balance Bs, and annual balance Ba

data available from 1959 to 2011 for South Cascade

Glacier (World Glacier Monitoring Service 2012, 2013)

and from 1966 to 2015 for Wolverine and Gulkana

Glaciers (Fig. 1) (O’Neel et al. 2016). Monitoring is

ongoing, but more recent measurements for South

Cascade were not released at the time of our analysis.

In addition to having long-term, high-quality mass-

balance records, the glaciers exist in distinct climate

settings. Accordingly, their balance records show some

characteristic differences: Wolverine Glacier receives

ample moisture from the Gulf of Alaska (approxi-

mately 50 km away) and has a large mean-winter bal-

ance rate [Bw 5 2.2 meter water equivalent per year

(mwe yr21)] and also large variability (standard de-

viation: s 5 0.9mwe yr21); Gulkana Glacier is

;300 km inland and blocked from much of this pre-

cipitation by high coastal mountains (e.g., Rasmussen

and Conway 2004) and thus experiences a continental

climate with less precipitation and less variability

(Bw 5 1.3mwe yr21, s 5 0.3mwe yr21). Meanwhile at

lower latitudes, South CascadeGlacier is 250 km inland

from the Pacific but is only partially blocked from on-

shore moisture flow by the Olympic Mountains and

still resides in a maritime climate as evidenced by its

high winter accumulation and variability (Bw 5
2.8mwe yr21, s 5 0.6mwe yr21).

The long-term mean mass-balance values are 20.4,

20.5, and 20.6mweyr21 for Wolverine, Gulkana, and

South Cascade, respectively, indicating that all three gla-

ciers have beenout of equilibriumwith the average climate

over the study period. However, as stated previously,

Wolverine and South Cascade show significant variability

in annual balance (s 5 1.2 and 1.0mweyr21), such that

years of positive annual balance are not uncommon. For

Gulkana, the mean annual balance is comparable in

magnitude to the standard deviation (s 5 0.6mweyr21),

and indeed there are only 7 years of positive balance in the

50-yr record, with the most recent in 2003.

b. Mass-balance data

The glacier-averaged balance values reported by the

USGS are calculated from point measurements of ac-

cumulation and ablation, which are converted tometers-

water-equivalent based on density measurements and

FIG. 1. (left) Locations of three target glaciers. (right) Mass-balance records for each glacier, each with winter

(yellow), summer (red), and annual (blue) data.
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then extrapolated over the whole glacier area using

empirical altitude-dependent relations. Wolverine

andGulkana each have three index sites at which point

mass balance is measured, though measurements at

additional sites have been made intermittently to

constrain results. Additionally, digital elevation

models (DEMs) from aerial photogrammetry are used

to update the area–altitude distribution used for ex-

trapolation from point balance to glacierwide balance

as the glacier’s geometry changes, linearly in-

terpolating between years with available DEMs (Van

Beusekom et al. 2010; O’Neel et al. 2014). South

Cascade currently uses six fixed index sites (Bidlake

et al. 2010). Snow depth, which is often more easily

measured than ablation, is frequently measured in

additional locations on the glaciers in order to mitigate

the effects of local irregularities. Maximum accumu-

lation and ablation values for each index site are often

derived quantities because measurements rarely fall

precisely at the transition between accumulation and

ablation seasons, and furthermore, these dates may

not be synchronous across the glacier. For all three

glaciers, temperature and precipitation measurements

from nearby meteorological stations are used to esti-

mate the dates of these transitions and to model the

accumulation/ablation that occurred between the

measurement date and the seasonal transition.

Complete descriptions of the models and conventions

used to generate the mass-balance datasets are available

in USGS technical reports—for example, Bidlake et al.

(2010) for South Cascade Glacier and Van Beusekom

et al. (2010) for Wolverine and Gulkana Glaciers. For

our purposes, we use Bw, Bs, and Ba in their available

forms as estimates of glacierwide change from season to

season. We discuss the potential effects of observational

error in section 5.

c. Sea level pressure

The SLP predictor is derived from 2.58 3 2.58monthly

mean SLP data from the NCEP–NCAR reanalysis

(Kalnay et al. 1996). To match the respective seasons of

the mass-balance time series, averages of winter

(October–March) and summer (April–September) SLP

are used. The domain is restricted to 208–708N and 1508–
2508E. Our results are not qualitatively sensitive to the

domain, provided that most of the North Pacific is in-

cluded. However, the fraction of mass-balance vari-

ability explained by the predictor declines somewhat

with significantly larger or smaller domains.

d. Sea surface temperature

For the SST predictor, 18 3 18 monthly values come

from the Met Office Hadley Centre Sea Ice and Sea

Surface Temperature dataset (HadISST1; Rayner et al.

2003). The global mean is subtracted from the SST field

at each time, and we use the resulting anomaly fields as

the SST predictor. This removes the global, long-term

warming signal associated with external radiative

forcing (e.g., IPCC 2013) and in principle retains trends

unique to the study domain, though this residual is

small compared to the global mean trend. The domain

is the same as that for SLP, except it is further restricted

by removing all grid points that experience sea ice

cover, even if only seasonally. Seasonal averages are

taken as with SLP.

3. PLS regression method

Using a time-varying field (i.e., multiple predictor

time series) to explain variability in the predictand

preserves spatial information, but since the individual

predictors are spatially indexed observations of the

same climate variable, they may be highly correlated.

While this could be problematic for some regression

techniques, the PLS method eliminates this problem by

decomposing the predictor set into orthogonal patterns

of variability.

This idea is common to a number of statistical ap-

proaches for analyzing variability in climate data.

For example, principal component analysis (PCA)

decomposes a single dataset into a set of patterns that

best capture its own variability, and maximum co-

variance analysis (MCA; see, e.g., Bretherton et al.

1992; von Storch and Zwiers 1999) identifies patterns

that maximize covariance between two different var-

iables. Like MCA, PLS regression identifies common

patterns between different climate variables, but here

the constraint is one way: the predictor is decomposed

into patterns that explain the maximum amount of

variance in the predictand. This makes PLS especially

suitable for dynamical adjustment, where the primary

goal is to identify the large-scale origins of variability

in the predictand.

Dynamical adjustment using PLS regression pro-

ceeds as follows. Let X be an n 3 m matrix with n

observations in time at m spatial points (i.e., m pre-

dictors), which has been standardized to zero mean

and unit variance in time. In the case of a gridded

dataset such as SST or SLP, the grid is reshaped into a

13m vector for each observation time (wherem is the

product of the original grid’s length and width),

yielding the n 3 m matrix for the whole observational

period. Let Y be the predictand time series of n ob-

servations, also standardized to zero mean and unit

variance. In our case, Y is an n3 1 vector, though PLS

regression can be generalized to the case that the
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predictand is a matrix. First, a correlation map W is

created using detrended time series:

W5
1

n2 1
X 0 TY0 , (1)

where the prime denotes that the predictand and each

predictor grid point have been detrended in time. This is

done so that the correlation map is not biased by trends,

which could more easily be correlated without a dy-

namical link. The quantityW is thus anm3 1 vector that

can be reshaped back into the predictor’s physical (grid)

dimensions to provide a map of the detrended correla-

tions between predictor and predictand at each obser-

vation point (see Fig. 2a). The vector W is weighted by

the cosine of latitude (denotedWc) to equally distribute

influence by area and finally normalized to unit magni-

tude. Brackets hAi hereinafter denote the following

normalization for a generic vector A:

hAi5A/
ffiffiffiffiffiffiffiffiffiffiffi
ATA

p
. (2)

Next, the predictor is projected onto hWci:

t5XhW
c
i , (3)

where t is an index in time (n 3 1) that expresses the

variations of the spatial correlation patterns. Here we

note the similarity with PCA, in that t is analogous to

the principal component of an empirical orthogonal

function of X, where here we simply enforce that the

function is the correlation map Wc. The index t then

determines regression coefficients that are used to re-

move variance from both the predictor and the pre-

dictand. Let P be the vector of regression coefficients

for the set of predictor variables X:

P5XThti . (4)

Let b be the regression coefficient for the predictand

Y:

b5 htTiY . (5)

Then, the index is subtracted from the predictor and

predictand weighted by P and b, which yields the dy-

namically adjusted variables:

X
adj

5X2 tPT and Y
adj

5Y2bt . (6)

The fractions of variance inX andY explained by t are

given, respectively, by the following:

(PTP)/�
m
�
n

jX
mn
j2 and b2/�

n

jY
n
j2 . (7)

Note that, in general, the respective fractions of var-

iance explained in X andY are not equal since PLS finds

patterns that maximize variance in Y explained by X.

At this stage, the PLS regression has removed from X

the component of its own variability that explains the

most variance in Y. And from Y, it has removed the

FIG. 2. Adjustment for South Cascade Glacier winter balance using SLP. (a) The leading correlation map be-

tween SLP and winter balance. Contour interval is 0.1, with the thick line indicating the zero contour and dashed

contours indicating negative correlations. (b) The second correlation map. (c) The two leading indices associated

with SLP variability, to be regressed out of thewinter balance record. (d) The original winter balance record and the

adjusted time series, which remains after the dynamically induced variability has been removed.
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component of variability that can be attributed to vari-

ability in X. In our context of PLS-based dynamical ad-

justment, the pattern regressed out ofX is interpreted as a

mode of large-scale climate variability that drives changes

in glacier mass balance. However, there may in fact be

multiple independent modes whereby the predictor fields

drive the predictand, and thus more associated covari-

ability may remain between Xadj and Yadj. Much of the

utility of PLS regression comes from the capability to

reiterate the regressionwithXadj andYadj as predictor and

predictand. Further iterations yield a series of indices t1,

t2, . . . , tn. These indices aremutually orthogonal, and thus

the total variance explained is additive.

Successive iterations typically explain progressively

less variance and will eventually fail to yield significant

or physically meaningful adjustments. Previous studies

(Smoliak et al. 2010, 2015;Wallace et al. 2012) have used

cross validation to determine the number of PLS modes

that should be considered in analysis. We follow in this

vein, using a procedure outlined in Abdi (2010), which

evaluates the predictive skill of the PLS modes when

applied to an observation left out of the regression. This

method indicated that between one and four modes had

predictive power depending on the variables used.

However, this metric—especially with relatively short

records—is not guaranteed to inform physical signifi-

cance. Thus, for all dynamical adjustments presented

here, we consider the two leading modes for the sake of

consistency. This involves some risk of retaining in-

significant modes (or omitting significant modes), but

since the modes beyond the leading pattern explain a

small amount of variance, they are unlikely to project

strongly onto mass-balance trends and significantly bias

our conclusions.

4. Results

a. Raw data

We begin by characterizing the noise and trends in the

raw mass-balance records using standard statistical

metrics. We use a straightforward version of the t sta-

tistic to evaluate trend significance (see, e.g., Casola

et al. 2009; Roe 2011). For a given mass-balance record,

the t value is given by

~t5
DB

s

ffiffiffiffiffiffiffiffiffiffiffi
n2 2

12

r
, (8)

where DB is the magnitude of total change in mass

balance as estimated by a least squares linear fit to the

data over the observing period, s is the standard de-

viation of the detrended residual, and n is the number

of degrees of freedom. The critical t value for a given

threshold of confidence and number of degrees of

freedom can be found in standard statistics tables, and

we can then solve for a critical DB/s (the signal-to-

noise ratio) needed to declare a trend significant.

A variable with persistence (i.e., serial correlation) on

the order of the sampling interval Dt has fewer in-

dependent degrees of freedom than observations. To ac-

count for the possibility of persistence, we estimate n from

the autocorrelation function of the time series. One

straightforwardmetric based onBartlett (1946) states that

the 95% confidence bound for a lag-1 autocorrelation rDt
indistinguishable from zero is 1:96/

ffiffiffiffi
N

p
, where N is the

number of observations.After linear detrending, all of the

mass-balance records fall below this threshold of ;0.27,

indicating that the test does not provide evidence of

persistence. Another method, based on Leith (1973), as-

sumes a red noise process with a decorrelation (e-folding)

time t estimated from rDt. In this case,

n5
2NDt

2t
, where t5

2Dt

ln(r
Dt
)
. (9)

Following this metric, n/N approaches 1 as rDt ap-

proaches e22 (;0.13). Again, rDt for all records fall be-

low this threshold. On this basis we conclude that the

observations lack persistence, and thus each time series

is consistent with N independent degrees of freedom.

We discuss the sensitivity of our conclusions to the

choice of n in the next section.

The critical t value, and thus the critical signal-to-

noise ratio, also depends on whether a one-tailed or two-

tailed test is used—that is, whether trends breaching the

chosen confidence level can come from one or both sides

of the t distribution. A one-tailed test can enhance de-

tectability provided the sign of the trend can reasonably

be assumed a priori. However, considering that internal

climate variability can have a considerable impact on

decadal climate trends (e.g., Deser et al. 2012; Wallace

et al. 2012), and lacking an a priori assumption about the

sign of this trend contribution, we argue that a two-tailed

significance test is most rigorous for this study. This al-

lows for either positive or negative trends to be detected

but requires a higher signal-to-noise ratio for signifi-

cance at a given confidence level.

For the three target glaciers, we see a common pattern.

All three have negative trends in summer balance, signif-

icant at the 5% level (Table 1). However, none of the

glaciers have statistically significant trends in winter bal-

ance.Although several studies have documented declining

snowpack inWashington’s CascadeMountains (e.g.,Mote

et al. 2005; Casola et al. 2009; Stoelinga et al. 2010), winter

balance depends on a different hypsometric signature on

the landscape as well as other local effects specific to the
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glacier’s setting within the mountain range (e.g., ava-

lanching, wind deposition, microclimates) and thus may

not exhibit the same trends as regional snowpack.

Finally, driven by the summertime contribution, the

annual mass balance has a negative trend for all three

glaciers but is significant only forWolverine andGulkana.

b. Adjustment of winter balance

We now apply dynamical adjustment to investigate

what fraction of each mass-balance record can be at-

tributed to variability in large-scale atmospheric circu-

lation. We first present results for winter mass balance,

as they demonstrate the clearest dynamical link between

predictors and predictand. For South Cascade Glacier,

the leading SLP predictor pattern explains 53% of var-

iance in winter balance. The spatial pattern of the

leading SLP mode (Fig. 2a) shows that variability in

winter accumulation is strongly correlated with the

strength of the Aleutian low, a persistent wintertime

pattern of low surface pressure and cyclonic circulation

in the North Pacific. Variability in this feature reflects

shifts in the latitude and intensity of the winter storm

track and thus variability of precipitation over South

Cascade Glacier (e.g., Bitz and Battisti 1999).

A second iteration of PLS regression yields a second

pattern explaining an additional 10% of the variance in

the original record (Fig. 2b). In general, spatial patterns

for successive modes are more difficult to interpret

physically since the remaining correlations after the

preceding mode(s) have been removed are weaker and

less spatially coherent. Additionally, the constraint that

modes are mutually orthogonal can obscure physical

interpretations, given that dynamical processes are not

necessarily linearly independent (e.g., Hannachi et al.

2007). The two orthogonal indices t1, t2 generated from

these patterns are shown in Fig. 2c, and their combined

effect is seen in Fig. 2d; the adjusted time series has 63%

less variance than the raw winter balance record.

Using SST as a predictor returned similar results for

South Cascade winter balance; the leading patterns

explained 47% and 12% of variance, respectively. The

spatial correlation patterns are distinct for SST, with the

leading pattern resembling the spatial signature of

the Pacific decadal oscillation (e.g., Mantua et al. 1997)

(see Fig. 3a). However, the indices (Fig. 3c) produced

from SST are strongly correlated with those of SLP (r5
0.84 for leading mode), indicating that the dynamical

adjustment extracts a common element of variance in

South Cascade Glacier’s mass balance driven by the

coupled ocean–atmosphere system. Similar to results

TABLE 1. Trends in mass-balance records (reported as

mwe yr21 decade21) based on data from 1959 to 2011 for South

Cascade and 1966–2015 for Wolverine and Gulkana. Values in

boldface are trends that are statistically significant at 95% based

on a two-tailed Student’s t test.

Winter Summer Annual

South Cascade 0.02 20.16 20.15

Wolverine 20.03 20.21 20.23

Gulkana 20.03 20.17 20.20

FIG. 3. As in Fig. 2, but using SST as predictor for South Cascade winter balance. (a) The leading correlation map

for SST. Contour interval is 0.1, with the thick line indicating the zero contour and dashed contours indicating

negative correlations. (b) The second correlation map. (c) The two leading indices associated with SST variability.

(d) The original and adjusted time series.
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using SLP, the adjustment with SST removes 59% of the

original variance in Bw (Fig. 3d).

The dynamical adjustments for Wolverine Glacier

accounted for similar, albeit slightly weaker, compo-

nents of variance in winter balance. The first two SLP

patterns explained 46% and 9% of variance, and the

SST patterns explained 34% and 9%, respectively.

Notably, the leading correlation patterns associated

with SLP and SST have similar structure but opposite

polarity to their respective counterparts for South

Cascade Glacier (Fig. 4). As a result, the leading in-

dices for Wolverine and South Cascade Glaciers are

strongly negatively correlated (r ’ 20.9 for SLP

and 20.8 for SST). For the years that the mass-balance

observations overlap for all three glaciers (1966–2011),

the records themselves are moderately anticorrelated

(r 5 20.42), a relationship that has been attributed to

circulation anomalies that shift winter storms toward

southeast Alaska and away from Washington State, or

vice versa (e.g., Walters and Meier 1989; Bitz and

Battisti 1999; Rasmussen and Conway 2004). Addi-

tionally, Bitz and Battisti (1999) showed that winter

balance has different temperature sensitivities between

these settings, with warmer winters more favorable for

accumulation in Alaska and the opposite for Wash-

ington. This may then be a coupled temperature and

precipitation signal; it is difficult to say which domi-

nates from the patterns alone, although the end effect is

reflected in winter accumulation. The adjusted records

for Wolverine and South Cascade Glaciers are effec-

tively uncorrelated (r520.05 using SLP), reinforcing

that the adjustment is indeed identifying and removing

the dynamical contribution to mass-balance variability.

Winter mass balance for Gulkana Glacier showed a

much weaker connection to the predictors; SLP and SST

patterns explained 23% 1 7% and 22% 1 6%, re-

spectively. Recalling that Gulkana’s winter balance re-

cord has comparatively little variability to begin with

(Fig. 1), the year-to-year changes in accumulation that

are driven by internal North Pacific climate variability are

quite small, consistent with its more continental setting.

In summary, by applying dynamical adjustment we

can account for almost two-thirds of the total variance in

the maritime glaciers’ winter accumulation, indicating a

close connection between internal variability in North

Pacific circulation and winter mass balance; however,

the case of Gulkana Glacier, with less than one-third of

variance explained, suggests that this relation is muted

FIG. 4. Comparison of leading winter correlation patterns for (a),(b) South Cascade and (c),(d) Wolverine

Glaciers using (a),(c) SLP and (b),(d) SST as predictors. Contour interval is 0.5, with the thick line indicating the

zero contour and dashed contours indicating negative correlations. Note the similar structure but opposite polarity

between patterns corresponding to the two glaciers.
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for continental glaciers, which are buffered by coastal

mountains and long overland fetches.

c. Adjustment of summer balance

For the maritime glaciers (South Cascade and Wol-

verine), warm-season (April–September) SLP and SST

explain substantially less variance in the summer balance

records. South Cascade Glacier is more closely linked

with SLP than SST, with two predictor patterns explain-

ing 28% 1 7% of variance for SLP, compared with only

15% 1 6% for SST. (The second modes may not in fact

be significant but are reported here for the sake of con-

sistency.) For Wolverine Glacier, both predictors explain

roughly the same total variance, with 21%1 8% for SLP

and 24% 1 4% for SST. The variance explained by

summer SLP for Gulkana Glacier (22%1 9%) is similar

to that of the maritime glaciers, but it is notable in that it

makes Gulkana the only glacier with comparable

amounts of dynamically induced variability in summer

and winter mass balance. This is broadly consistent with

the rule of thumb that continental glaciers, being further

removed from the ocean’s moisture-laden storms and

moderating effect on temperature, are comparatively

more sensitive to melt-season climate (e.g., Medwedeff

and Roe 2016). It is perhaps not surprising that summer

SSTs are a weak predictor for GulkanaGlacier’s summer

balance, explaining only 15% of total variance.

By far the strongest summer SST relationship is the

leading mode for Wolverine Glacier, explaining 24% of

variance. The correlation map (Fig. 5a) shows what may

be an intuitive result for this glacier situated closest to

the Pacific: nearshore SST and summer balance are an-

ticorrelated (i.e., years of anomalously warm ocean

surface are associated with more summer melt). Corre-

lation maps for the leading summer SLP patterns (as-

sociated with ;20% of variance for each glacier) all

show moderately positive correlation with SLP to the

south of each glacier (Figs. 5b–d). However, the links

between summer climate anomalies and summer bal-

ance are weaker than for winter, consistent with gener-

ally less vigorous circulation in summer.

d. Adjusted trends

Our analyses show that a substantial amount (;30%–

60%) of variance in mass balance is explained by vari-

ability in SLP and SST. We can now return to one of our

main motivating questions: What is the role of natural

variability in the observed trends in mass-balance

FIG. 5. Selected correlation patterns for summer mass balance. Contour interval is 0.1, with the thick line in-

dicating the zero contour and dashed contours indicating negative correlations. (a) Wolverine Glacier’s summer

balance is negatively correlated with SST near the western coast of North America. (b)–(d) For all three glaciers,

summer balance is positively correlated with SLP in regions to the south.
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records? It is important to note that, although the corre-

lation mapW [Eq. (1)] is generated from detrended data,

the component of variance removed from the predictand

may itself contain a linear trend. This is because the index

t and the regression coefficients b and P contain data that

have been standardized but not detrended [see Eqs. (3)–

(5)]. Thus, low-frequency variance that might be projec-

ting onto the linear trend can in principle be removed

from the mass-balance records—indeed, this is one mo-

tivation for pursuing dynamical adjustment. Though all of

the dynamically adjusted mass-balance records necessar-

ily have reduced overall variance, removing this low-

frequency variance may yield residual time series [Yadj in

Eq. (6)] that have enhanced or reduced trends, affecting

the interpretations of observed trends and their causes.

Since both the noise and the trend are affected by the

dynamical adjustment, we revisit the t statistic [Eq. (8)] as a

way to compare the raw and adjusted mass-balance re-

cords. Recall that the significance of a trend in a given

number of independent observations depends on the

signal-to-noise ratio DB/s. This ratio is a useful metric for

comparing the relative significance of trends, and for

significance at the 5% level, our records requires that

DB/s . 0.98 for N 5 53 years (South Cascade) and

DB/s . 1.00 for N 5 50 years (Wolverine and Gulkana).

Table 2 shows DB/s for all raw records and adjustments,

and we note that trends in the South Cascade and Wol-

verine winter records are not significant in raw or adjusted

form. Gulkana’s adjusted winter balance trend barely

breaches the threshold for significance at 95% when using

SLPas apredictor but is just short of it using SST.However,

all three of the summer records have significant trends in

raw form and improved signal-to-noise ratios after adjust-

ment. In other words, the trends in summer mass balance

are not associatedwith low-frequency circulation variability

and are more consistent with an external forcing.

5. Sensitivity

a. Methods for testing trend significance

Several factors should be borne in mind when inter-

preting these results. First of all, recall that the threshold

for trend significance is dependent on the number of

degrees of freedom n estimated from the time series’ au-

tocorrelation [Eq. (9)]. Given that the autocorrelation

functions are rather noisy for these short time series, it is

worth considering significance estimates for the case n,N

to account for the possibility that sampling effects have

obscured weak persistence. While this does increase the

critical signal-to-noise ratio for significance, we find that

our conclusions are robust to different choices of n.

Consider a decorrelation time twice themaximumallowed

for our initial assumption that n 5 N, which then cuts n in

half. If n 5 25 (26), the critical DB/s for 95% confidence

required by the t test is 1.49 (1.45) for a time series of 50

(53) years. Even in this case, the interpretation would re-

main that all summer trends are significant at 95%, both

before and after dynamical adjustment (see Table 2).

As an alternative to the t test, we also applied the

method of phase randomization to test for trend signifi-

cance (see, e.g., Theiler et al. 1992; Vafeiadis et al. 2008).

In this framework, a random phase rotation is applied to

each Fourier frequency component of the detrended time

series. After transformation back into the time domain,

this yields a surrogate time series where the spectrum and

autocorrelation structure have been preserved. A large

ensemble (104–105) of these surrogate datasets can then

provide a distribution of trends that arise merely from

undersampling the spectrum of the original time series.

The observed trends for raw and adjusted summer bal-

ance fell well beyond the central 95% of the distribution.

However, the method of phase randomization has some

caveats for short time series—namely, that the proba-

bility distributions of surrogate data are not well pre-

served. Thus, while consistent with the other trend tests,

this method may not stand on its own in this application.

b. Choice of predictor variable

Additionally, we find that the trend changes after ad-

justments vary with the choice of predictor (however, the

significance at 95% changes only for Gulkana Glacier’s

winter balance, where both trends are near the threshold).

While SLP and SST are dynamically linked and yield

highly correlated indices (see section 4b), their trend ad-

justments are not consistent. For South Cascade and

WolverineGlaciers, SLP and SST adjust themass-balance

trends in opposite directions, in both the summer and

winter cases (Fig. 6). This is consistent with the overall

result that circulation variability has not contributed

substantially to the trends over the period of observation.

In addition to the choice between SLP and SST,we also

assessed the sensitivity to the choice of data source for the

same climate variable. The Met Office HadSLP2 dataset

is an alternative SLP dataset, providing monthly means

on a 58 3 58 grid (Allan and Ansell 2006). Results using

this predictor are qualitatively equivalent to those using

TABLE 2. Signal-to-noise ratios DB/s for raw mass-balance re-

cords and adjustments using SLP and SST as predictors. Boldface

values indicate statistical significance at 95% based on a two-tailed

Student’s t test.

South Cascade Wolverine Gulkana

Raw SLP SST Raw SLP SST Raw SLP SST

Winter 0.13 0.68 0.17 0.15 0.70 0.29 0.47 1.04 0.88

Summer 1.48 1.58 2.44 1.66 2.15 1.92 1.67 2.45 2.35
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the NCEP–NCAR reanalysis; the correlation patterns

and respective amounts of variance explained are very

similar, and the trend adjustments are also minimal.

c. Observational error

Both predictor and predictand datasets contain some

degree of observational and sampling error. The datasets

for the Alaskan glaciers have been reanalyzed, as

described by Van Beusekom et al. (2010) and in the

supplementary material of O’Neel et al. (2014). Work

by the USGS addresses both systemic and isolated er-

rors in reported balance data, and ongoing efforts in-

clude calibrating field measurements with geodetic

methods using available DEMs.

What are the effects of remaining measurement error

on dynamical adjustment? Since PLS regression operates

FIG. 6. Raw and adjusted data for all glaciers, with linear trends plotted by thick lines. South Cascade and Wolverine Glaciers dem-

onstrate that the change in trends is sensitive to the choice of predictor. Also note that for both predictors, the adjustment shifts the trends

in South Cascade and Wolverine winter balance in opposite directions. This is a direct result of their opposing correlation structures

(section 4b). Any trends in the predictors in the highly (anti)correlated areas yield opposing trends in the associated indices.
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only on anomalies, it is insensitive to systemic biases in

mass-balance data (unlike, e.g., estimates of cumulative

balance). Random errors, however, may confound cor-

relationmaps and trend estimates. But while a large error

in one year’s reported mass balance certainly could bias

an initial linear trend estimate, it is unlikely to be erro-

neously removed by dynamical adjustment, and thus the

changes to trends (or lack thereof) should be relatively

insensitive to this form of uncertainty. Furthermore, the

cases in which the statistics are shored up by a physical

interpretation, as in the relationship between South

Cascade, Wolverine, and the Aleutian low (section 4b),

suggest that observational or sampling errors in the mass

balance or predictor datasets are not necessarily a barrier

for identifying relevant dynamical patterns.

d. Conventional mass balance vs reference surface
mass balance

While we have focused on partitioning the effects of

internal climate variability and external forcing onmass-

balance changes, it is also important to consider the ef-

fect that a changing glacier geometry can have on mass

balance measurements. Terminus changes constitute a

negative feedback by changing the ablation area, while

thickness changes can counteract this by lowering or

raising surface elevation across the glacier. These

processes have motivated analyses of reference surface

mass balances, which are calibrated to a constant glacier

hypsometry (e.g., Elsberg et al. 2001; Huss et al. 2012).

Reference surface values were available for Wolverine

and Gulkana Glaciers through 2009 (Van Beusekom

et al. 2010), and we found that dynamically adjusting

these data produced qualitatively similar results to those

using conventional balance. Trend estimates are slightly

different for reference surface balances, but summer

trends retained significance, suggesting that they are not

principally a geometrical effect.

e. Length of time series

Finally, the length of the predictand time series has

some interesting implications. We focus on the USGS

benchmark glaciers in part because they offer long un-

interrupted records and thus offermore information to be

compared with the other climate datasets. However, the

trend biases caused by the low-frequency components of

natural variability can be more dramatic in shorter re-

cords. This is a familiar challenge associated with limited

sampling, but it means that the skill of dynamical ad-

justment in terms of removing dynamically induced

trends is sensitive to record length. As an illustrative ex-

ample, we consider separate adjustments for two halves

of the South Cascade winter record (Fig. 7). In the raw

FIG. 7. Dynamical adjustment and trend estimates are sensitive to the length of the record being analyzed. Time

series and linear trend estimates are shown for each period for raw and adjusted data. (a) Adjustments to South

Cascade winter balance for the whole record. (b) Adjustments performed separately for the periods 1959–84 and

1985–2011 (separated by dashed line). The opposing trends are almost completely removed by dynamical adjust-

ment, indicating that they are associated with circulation variability.
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data, the periods from 1959 to 1984 and from 1985 to 2011

have markedly different trends, a feature that is lost

when a linear trend is estimated for thewhole record. The

separate adjustments yield more dramatic trend changes

than with the entire record. For example, winter balance

from 1985 to 2011 has a strong positive trend (DB/s 5
1.35; significant at 90% but not at 95%), but this is nearly

completely removed by dynamical adjustment, indicating

that it is associated with circulation variability. Of course,

the half-and-half split is arbitrary, and we do not attempt

here to define an optimal time series length for adjust-

ment. However, given the preponderance of one- to two-

decade mass-balance records for glaciers around the

world (Medwedeff and Roe 2016), these may be impor-

tant considerations for future applications of dynamical

adjustment.

6. Summary and conclusions

We have applied PLS-based dynamical adjustment to

seasonal glaciermass balance and have found this to be a

useful method for analyzing dynamically induced vari-

ability, explaining from about one-third of summer

variance to well over half of winter variance in these

records. Building on its previous applications to regional

averages or fields (e.g., snowpack, surface air tempera-

ture, and hurricane activity), we find that the method of

dynamical adjustment is also capable of identifying re-

lationships between large-scale circulation and more

localized processes (i.e., accumulation and ablation on

individual glaciers).

For winter balance, dynamical adjustment shows that a

large portion of accumulation variability is explained by

North Pacific variability and is captured in comparable

proportions by both SLP and SST reanalysis fields. The

effect is strongest for the maritime glaciers (South Cas-

cade andWolverine), explaining over half of the variance.

The adjustments also demonstrated that the primary

source of dynamically induced variability for these gla-

ciers is variability in the Aleutian low. For summer bal-

ance, dynamical adjustment using SLP as a predictor

explained approximately one-third of variance for all

glaciers but substantially less when using SST. The vari-

ability left unexplained by dynamical adjustment is likely

the aggregate of many factors, including the nuances of

regional climate, mountain meteorology, and the noise

and sampling effects inherent in the climate and mass-

balance datasets. Further analysis using meteorological

data and/or regional climatemodels could provide insight

into such processes, as well as the limits of the relation-

ships that can be resolved with dynamical adjustment.

Dynamical adjustment also reveals whether trends

in time series are related to circulation variability. We

found that, despite the large degree of circulation-related

variability in seasonal mass balance, the dynamical ad-

justment did not change the trends substantially. How-

ever, by accounting for the possibility of a dynamically

induced bias, we have a refined view of mass-balance

change for these glaciers. The negative trends in summer

balance, which are significant in the raw data, persist

with greater signal-to-noise ratios when dynamically

induced variability is removed. This supports an in-

terpretation that the trends are externally forced and

associated with anthropogenic greenhouse warming.

However, no statistically significant trends exist in ad-

justed winter balance (with the exception of Gulkana’s

winter balance, but its significance is not robust to the

choice of predictor). This strengthens the interpretation

that anthropogenic trends in accumulation over the gla-

ciers have yet to emerge.

The absence of winter trends is common to many

winter mass-balance records (Medwedeff and Roe

2016) and may simply reflect the different temperature

sensitivities of accumulation and ablation. In theory,

warming winters would eventually cause a decline in

accumulation as the average freezing level climbs,

though in dry, cold settings the initial effect may in-

stead be increased precipitation due to a greater at-

mospheric moisture capacity. Indeed, winter warming

and elevated freezing levels have been observed in

northwestern North America, but the actual effect

on winter balance varies depending on the hypsomet-

ric profile of the glacier and the baseline climatology

(Arendt et al. 2009). It follows that the time of

emergence—and even the sign—of winter balance tre-

nds under warmingmay vary considerably by region and

by glacier. Since such changes would inevitably exist amid

natural variability, dynamical adjustment could be a

usefulmethod for diagnosing any new trends that emerge.

The general question of the relative importance of ex-

ternal forcing and internal variability in observed trends is

an important one. Several studies have addressed it for

glacier mass balance in different ways (e.g., Huss et al.

2010; Marzeion et al. 2014). Huss et al. (2010) concluded

from running-mean correlations that up to half of the

twenty-first-century declines in mass balance in the Swiss

Alps could be accounted for by the Atlantic multidecadal

oscillation. Dynamical adjustment would provide an al-

ternative analysis method that could address the same

question and would supply the associated correlation

patterns that could be evaluated for dynamical mecha-

nisms. Marzeion et al. (2014) used ensembles of global

climate models to estimate the magnitude of natural

mass-balance variability relative to simulated trends, ag-

gregated into different regions. Dynamical adjustment

would provide a complementary analysis here, too.
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Finally, it is also important to understand how much

of a model’s projection of a future climate trajectory

may be attributable to internal variability (e.g., Deser

et al. 2012). By identifying the variability associated with

circulation patterns in the modern climate, dynamical

adjustment could again be used to constrain the exter-

nally forced portion of the climate projection. Dynam-

ical adjustment is thus a versatile tool, whose wider

application to a variety of glacier mass-balance settings

and problems may prove useful.
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