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We then model the lake’s response to much longer synthetic 
time series of precipitation and evaporation calibrated to the 
observations, and compare the magnitude and frequency 
of the modeled response to the Great Salt Lake’s historical 
record. We find that interannual climate variability alone 
can explain much of the decadal-to-centennial variations in 
the lake-level record. Further, analytic solutions to the linear 
model capture much of the full model’s behavior, but fail 
to predict the most extreme lake-level variations. We then 
apply the models to other lake geometries, and evaluate 
how the timing and amplitude of a lake-level response dif-
fers with climatic and geometric setting. A lake’s response 
to a true climatic shift can only be understood in the con-
text of these expected persistent lake-level variations. On 
the basis of these results, we speculate that lake response to 
interannual climate variability may play an important part in 
explaining much of Holocene lake-level fluctuations.

Keywords  Lake-level variability · Lake modeling · 
Climate variability · Great Salt Lake

1  Introduction

Lakes are important archives of climate history, respond-
ing sensitively to variations in evaporation and precipita-
tion. A lake integrates climatic information over its entire 
catchment area, reflecting regional climate signals with a 
simple volumetric response. Langbein (1961) noted that 
closed-basin lakes, which are found in semi-arid regions 
and lack drainage outlets, fluctuate more than open lakes, 
because variations in the inflow can only be compensated 
by a change in the lake’s surface area. Therefore, closed 
lakes are particularly sensitive to climate fluctuations, and 
have been the subject of many paleoclimate studies (see 

Abstract  Lakes are key indicators of a region’s hydrologi-
cal cycle, directly reflecting the basin-wide balance between 
precipitation and evaporation. Lake-level records are there-
fore valuable repositories of climate history. However, the 
interpretation of such records is not necessarily straight-
forward. Lakes act as integrators of the year-to-year fluc-
tuations in precipitation and evaporation that occur even in 
a constant climate. Therefore lake levels can exhibit natural, 
unforced fluctuations that persist on timescales of decades 
or more. This behavior is important to account for when 
distinguishing between true climate change and interannual 
variability as the cause of past lake-level fluctuations. We 
demonstrate the operation of this general principle for the 
particular case-study of the Great Salt Lake, which has long 
historical lake-level and climatological records. We employ 
both full water-balance and linear models. Both models cap-
ture the timing and size of the lake’s historical variations. 
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Street-Perrott and Harrison 1985; Kohfeld and Harrison 
2000).

The integrative nature of lakes also complicates the 
interpretation of a region’s climatic history. A lake proxy 
record does not distinguish between an increase in pre-
cipitation and a decrease in evaporation. Moreover, lakes 
act as low-pass temporal filters of the climate (e.g. Mason 
et al. 1994; Liu and Schwartz 2014). For example, if a lake 
that is initially in steady state experiences a spike in pre-
cipitation, its level rises and spatial extent increases. With a 
larger surface area, the net evaporation also increases, and 
the lake gradually lowers and returns to its original size. 
The size and shape of the lake, and the mean climatic state 
determine the time it takes to return to equilibrium (e.g. 
Mason et al. 1994). This delayed and smoothed response to 
a climate signal is a hallmark of other geophysical systems 
with memory such as the ocean’s mixed layer (Hasselmann 
1976; Frankignoul and Hasselmann 1977) and glaciers 
(Oerlemans 2000; Roe 2011). In terms of lakes, both the 
spatial and temporal integration of evaporation and precipi-
tation can complicate the attribution of a lake-level change 
to a single climatic event.

The basic mechanism of how a lake re-establishes equi-
librium in response to a climate perturbation has been well 
described in other studies (e.g. Langbein 1961; Mason 
et  al. 1994; Sene 1998; Kohfeld and Harrison 2000; Liu 
and Schwartz 2014) The specific goal of the present study 
is to evaluate its implications for the lake-level response to 
the year-to-year stochastic fluctuations in precipitation and 
evaporation that occur even in a constant climate. Much 
of this variability is essentially due to the random vagar-
ies of the weather, and has no interannual or large-scale 

persistence (e.g., see Burke and Roe 2014 for a recent 
discussion and some relevant references). Much of the 
paleoclimate literature has interpreted lake-level records 
as reflecting climate changes and variations (see Street-
Perrott and Harrison 1985; Bartlein et  al. 1998), but has 
overlooked the possible role of stochastic variability in a 
constant climate. A parallel series of studies has evaluated 
the role of stochastic variability for glacier-length fluctua-
tions (e.g. Oerlemans 2000; Roe and O’Neal 2009; Roe and 
Baker 2014). Such studies show how century-scale, kilom-
eter-scale glacier-length fluctuations should be expected to 
occur even in a constant climate. Stochastic variability is 
thus an alternative explanation to climate change that must 
be considered for many of the Holocene glacial moraines. 
The present study explores such ideas, but for the different 
physical system of closed-basin lakes.

Our approach is two-fold. Firstly, we make a detailed 
case-study of the Great Salt Lake (GSL), where we can 
take advantage of a large amount of observational data 
and previous studies. For the GSL we present a full water-
balance model and a linear model, calibrated to observa-
tions and validated against historical lake measurements. 
Importantly, the linear model allows for analytic solutions 
to some key lake metrics, such as the lake-level response 
time, variance, power spectrum, and the expected return-
time of a given lake level, that characterize the lake-level 
response to interannual climate variability. We evaluate 
these solutions by driving the lake models with long syn-
thetic climate time series, with variability equal to modern 
instrumental observations of precipitation and evaporation. 
Secondly, we apply the findings from the case study in the 
first part to three distinctly shaped lake-basin geometries. 
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Fig. 1   Great Salt Lake’s setting and geometry. a Map view of the 
GSL. Data from Baskin (2005, 2006). Lake levels are contoured 
every meter. For visual clarity, the surrounding topography is con-
toured every 20  m from 1280 to 1300  m a.s.l., every 100  m from 
1300 to 1500 m a.s.l., and every 300 m from 1500 to 3000 m a.s.l. 

b GSL’s hypsometric curve from Loving et  al. (2000). The present-
day lake level is 1279 m a.s.l. which corresponds to a surface are of 
∼3500 km2, and is slightly below the historical mean lake level of 
1280.4 m a.s.l.
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The divergent responses of the different geometries high-
light the importance of understanding how a lake’s unique 
geometry and mean climatic state integrates the regional 
climate history.

2 � Case‑study setting: the Great Salt Lake

The GSL is located northwest of Salt Lake City, Utah, 
USA. It is bounded by the West Desert to the west, the 
Wasatch Range to the east, and is one of the largest ter-
minal lakes in the world, with a surface area averaging 
4300 km2 (including evaporation ponds for mineral recov-
ery) over the past 166 years (see Fig. 1a). The GSL is filled 
predominantly by inflow from surrounding rivers (66  %) 
and direct precipitation (31 %), with groundwater account-
ing for the small balance of the input (Arnow 1985). Water 
is lost primarily through evaporation. Despite its vast area, 
the lake is quite shallow, with a maximum depth of ∼10 m 
(e.g. Arnow and Stephens 1990). This aspect ratio is sum-
marized in the lake’s hypsometry (Fig. 1b, taken from Lov-
ing et al. (2000)). These dimensions mean that even a small 
imbalance between inflow and outflow can drive large 
changes in lake area.

The GSL has a long historical record of lake level 
(Fig. 2a). From 1847–1874, lake levels were estimated by 
observing the water depth over sandbars in the lake (Arnow 
and Stephens 1990). Since 1875, the United States Geo-
logical Survey (USGS) has been collecting water-surface 
elevation data directly. After linearly detrending the time 
series of interannual lake level, the standard deviation is 
1.14 m. We will characterize lake level by the elevation of 
the lake surface above sea level (a.s.l.). Over the historical 
record, the average lake level has been 1280.4 m a.s.l. The 
record low, in 1963, was 1277.5 m a.s.l., corresponding to 
a maximum depth of 8 m and a surface area of ∼2500 km2.  
In contrast, the lake’s historical high in 1987 of 1283.8 m 
a.s.l. corresponds to a depth of 14 m, and a surface area 
of ∼6200  km2. This high stand required an expensive 
pumping project to relocate the excess water (Loving et al. 
2000). Thus, lake area has varied by a factor of approxi-
mately 2.5 over the historical record.

2.1 � Climate: precipitation

The catchment basin of the GSL is large (5.5× 104 km2) and 
topographically varied, so a single rain gauge does not reflect 
the entire basin’s precipitation. Given sparse, and sometimes 
noncontinuous records, there will be some uncertainty in the 
precipitation history. For this work, we choose to use the Uni-
versity of Delaware’s monthly gridded precipitation product, 
which provides a continuous record from 1900 to 2010, based 
on an interpolation onto a 0.5° by 0.5° latitude/longitude grid 

(Matsuura and Willmott 2012). We sum the monthly totals 
into an annual record based on the water year, from Octo-
ber to September (Arnow 1985; Arnow and Stephens 1990) 
(Fig. 2b). Based on this data set, the mean (µP) and standard 
deviation (σP) in precipitation for the GSL basin are 0.37 and 
0.08 m year−1, respectively.
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Fig. 2   GSL’s lake level and climatological history. a The historical 
record of the GSL, from USGS Water Resources (2013), is shown in 
black. The grey and blue lines show the full and linear output from 
the modeled history, respectively. The models incorporate the pre-
cipitation and evaporation data from b and d. b Annual regional pre-
cipitation record, from Matsuura and Willmott (2012). Precipitation 
is summed over the water-year, from October to September. c Mean 
regional summer (JJA) temperatures from Willmott et  al. (2012). d 
Compilation of evaporation records from local pan measurements, 
from Western Regional Climate Center (2013). The inset shows the 
approximate annual volume of water pumped from the lake in 1986–
1988, divided by the lake’s area, so that this rate of removal is compa-
rable to the evaporation rate



K. Huybers et al.

1 3

2.2 � Climate: evaporation

Because it is difficult to directly measure, evaporation data 
is sparse and unreliable. Overlake evaporation is a function 
of temperature, wind, relative humidity, and salinity (e.g. 
Morton 1986). Among these variables, only temperature 
has a long and reliable record. Based on the University of 
Delaware’s gridded monthly temperature data (Willmott 
et al. 2012), average yearly summer (JJA) 2 m air tempera-
ture for the GSL area is 21.3 ◦C, and the standard devia-
tion in temperature is 0.91 ◦C (Fig. 2c). In previous studies, 
evaporation records of the GSL have been derived through 
mass-balance modeling and a modified Penman-Montieth 
equation, though each of these has drawbacks (Mohammed 
and Tarboton 2012). The mass balance approach assumes 
that all other quantities are perfectly known, while the 
modified Penman equation may not properly apportion the 
system’s available energy, and is more appropriate for time-
scales on the order of a day.

We follow Waddell and Barton (1980), Arnow (1985), and 
Arnow and Stephens (1990) in estimating overlake evapora-
tion on the basis of nearby pan-evaporation data. We piece 
together the temporal variations in evaporation using pan-
evaporation records from two sites near the GSL: Saltair 
(1957–1990) and Logan Farm (1971–2000) (data from West-
ern Regional Climate Center 2013, www.wrcc.dri.edu). We 
align these records, setting the mean to µE = 1m year−1,  
and the standard deviation to σE = 0.1m year−1, in agree-
ment with the water-balance model of Mohammed and Tar-
boton (2012) (Fig. 2d). Pan-evaporation records are subject to 
significant uncertainty, but are reasonable, if imperfect esti-
mates of overlake evaporation, capturing the relative changes 
over time. We will later show that evaporation is of second-
ary importance to precipitation in driving the GSL’s lake-level 
changes, and so our analysis is not critically dependent on the 
evaporation record.

2.3 � Persistence in the lake and the climate time series

It is clear even visually from Fig. 2 that the time series of 
precipitation, temperature, and evaporation have much 
less persistence than that of the lake itself. Persistence 
can be explicitly quantified by calculating the autocorrela-
tion function of a time-series (Fig.  3). One simple test of 
whether there is any significant persistence in a time series 
is whether the lag-1 autocorrelation exceeds 2

√
N

, where N is 
the number of points in the time series (e.g. von Storch and 
Zwiers 2001). These threshold levels are shown for their 
respective time series in Fig. 3. Based on this test, we con-
clude that no significant persistence exists for temperature 
and evaporation. Some slight interannual persistence may 
be indicated for the precipitation record, though its signifi-
cance is marginal.

Figure  3 demonstrates that the lake-level fluctuations 
themselves do exhibit significant persistence, and further, 
that this persistence is characterized by an exponential fit 
with a characteristic e-folding timescale, or memory, of 
approximately 8 years. The exponential fit underestimates 
the autocorrelation at lags less than five years, a discrep-
ancy which we explore later in this paper. Because there is 
little to no persistence in the climate variables, the lake’s 
memory must arise from the lake’s adjustment rather than 
being intrinsic to the climate. The main point of the present 
study is that the lake exhibits memory that is not present in 
the climate. Analysis of the lake models that we develop 
below explain much of this behavior.

2.4 � Previous research

Prior research has characterized the GSL as a low-order 
system, and suggests that the lake’s volume anomalies 
slightly lag the regional precipitation and temperature 
anomalies (Abarbanel and Lall 1996; Abarbanel et al. 1996; 
Sangoyomi et al. 1996; Lall et al. 1996). Related research 
invokes low-frequency climate phenomena to explain the 
low-frequency response of the GSL (Mann et  al. 1995; 
Lall and Mann 1995; Moon et al. 2008; Wang et al. 2010). 
These studies aim to use some combination of atmospheric 
indices to predict the GSL lake levels. In this study we 
aim to put these explanations into context by considering 
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Fig. 3   Autocorrelation function of the GSL’s historical lake-level 
(USGS Water Resources 2013), regional annual precipitation rate 
(Matsuura and Willmott 2012), regional JJA temperature (Willmott 
et al. 2012), and evaporation rate (Western Regional Climate Center 
2013). The arrows on the right side of the graph indicate the 2σ 
confidence level of a significant autocorrelation, which is a function 
of the length of the records. The lake has significant memory up to 
13 years, with an e-folding timescale of 8 years. With the exception 
of precipitation, which exhibits a small autocorrelation of up to a 
year [using calendar year or water-year average monthly precipitation 
totals from Matsuura and Willmott (2012)], the climate variables have 
no significant autocorrelation, indicating that they can be described as 
white noise processes. The dashed black line displays an exponential 
function with an e-folding decay time of 8 years
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the natural variability of lake level that occurs in response 
to white noise—the stochastic year-to-year fluctuations in 
weather that occur even without any climate change or per-
sistence in the climate.

Other studies have sought to understand the behavior 
of GSL. Kite (1989) proposed that the changes and appar-
ent periodicity in the GSL’s record are within the range 
of normal fluctuations and are not ascribed to climatic 
change. Mohammed and Tarboton (2011) refer to the lake’s 
bathymetry to explain the large and long excursions of the 
lake record. They note that the area of the lake controls the 
outgoing flux, and therefore a shallow lake like the GSL is 
quickly stabilized and modulated by the available evapora-
tive surface. In subsequent work, Mohammed and Tarboton 
(2012) use a simple lake model to calculate the sensitivity 
of the GSL to changes in inflow, precipitation, and air tem-
perature, and use variations of historical climate input to 
predict possible future lake-level scenarios.

Our work is similar in spirit to that of Mohammed and 
Tarboton (2011, 2012), but rather than being predictive, our 
goal is to understand the natural lake variability in order to 
put past and anticipated future fluctuations in context. We 
also extend this work by considering the role of alternate 
lake bathymetries on natural lake-level variability.

3 � The lake‑level model

In the following sections, the full and linearized mod-
els are described. The full model is similar to that of 

Mason et al. (1994), who derive general and comprehen-
sive time-dependent solutions to a lake’s water balance. 
They explore the response of lake level and area to step 
changes, single brief excursions, and sinusoidal varia-
tions in the climate. In contrast, our focus here is on the 
lake’s response to the continuous random perturbations 
in forcing that occur even in a constant climate. The lake 
model will first be presented in the context of our case 
study of the GSL, but will later be generalized to other 
lake geometries.

3.1 � The full model

The rate of volumetric change for a closed-basin lake such 
as the GSL is determined by the balance of inflow into and 
evaporation out from the lake, illustrated in Fig.  4. The 
mass budget can be described by a straightforward differ-
ential equation:

where VL(t) is the lake’s volume, AL(t) is the lake’s surface 
area, P(t) is the annual regional precipitation rate, I(t) is the 
total annual river inflow from the surrounding basin, and 
E(t) is the annual evaporation rate over the lake, all func-
tions of time, t.

Equation  (1) can be rewritten in terms of lake-level 
variations. The volume of water is a unique function 
of lake level: V = V(h), which can also be written as 
V(h) =

∫ h

0 AL(z)dz. Hence

(1)
dV

dt
= PAL + I − EAL ,

lake area (AL) 
evaporation (E)

precipitation (P)

catchment area (AB)

Fig. 4   Schematic of inputs into the full and linear models. The lake gains volume from both direct precipitation into the lake and from river run-
off, which we set as a fixed percentage of the precipitation that falls into the basin. All water loss is due to evaporation
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Substituting Eq. (2) into Eq. (1) yields:

We assume that the long-term mean of the inflow, Ī, is 
proportional to the product of the long-term mean of the 
annual regional precipitation rate, P̄, and the area over 
which runoff is collected (i.e., the area of the catchment 
basin, excluding the direct precipitation over the lake):

where AB is the entire catchment area of the lake. The 
parameter α reflects the fact that much of the precipita-
tion that falls into the basin is lost to evapotranspiration 
or groundwater percolation. Some of the uncertainty in 
regional precipitation may also be subsumed into α. We set 
α so that the lake level matches its long-term mean. For the 
GSL an α of 0.13 yields an Ī of 2.5 km3 year−1, which is 
close to the values estimated from stream gauges by Arnow 
and Stephens (1990) (2.3 km3 year−1) and Mohammed and 
Tarboton (2012) (2.8 km3 year−1).

The fluctuations in inflow, I ′ are parametrized as

where P′ denotes the variations away from P̄. If I ′ is neg-
ative, and its magnitude is greater than Ī, the inflow is 
set to zero. We have introduced a tunable parameter, γ, 
which ensures that the interannual fluctuations in inflow 
are the same as observed. We find we need γ = 0.40 
in order to emulate the observed standard deviation of 
inflow which is ∼1.5  km3 year−1 (Mohammed and Tar-
boton 2012). That we require different values for α and γ 
suggests that there is some slow-timescale process in the 
region’s groundwater that is neglected in our model. For 
the purposes of our study here, our goal is to drive the 
lake model with interannual variability in inflow whose 
magnitude is consistent with observations. Our use of γ 
allows us to do that.

We use the time series of P and E shown in Fig. 2b, d to 
force Eq. (3), using the parameter values shown in Table 1, 
starting in 1901 with the initial condition of h = 1280  m 
a.s.l., consistent with the observations. This initial lake 
level corresponds to a volume of 18.4 km3 and an initial 
area of 4100 km2. From 1901 to 1956, there is no evapora-
tion data, and so for this interval we force the lake with var-
iations in precipitation only, keeping the evaporation rate at 
its long-term mean of 1m year−1. The simulated lake-level 
history is shown in Fig. 2a. Despite its crude treatment of 
inflow and incomplete evaporation record, the detrended 
interannual standard deviation of model lake level (1.19 

(2)
dV

dt
=

dV

dh

dh

dt
= AL(h, t)

dh

dt
.

(3)
dh

dt
=

1

AL

(PAL + I − EAL).

(4)Ī = αP̄(AB − ĀL),

(5)I ′ = γP′(AB − AL),

m), agrees well with that of observations (1.14 m). The 
model time series correlates with observations at r = 0.85,  
which equates to a Nash-Sutcliffe model efficiency of 0.72 
(Nash and Sutcliffe 1970). The fact the model does a good 
job in the early part of the record, despite the absence of 
evaporation variations suggests that the precipitation is of 
primary importance in driving lake-level fluctuations, a 
result we confirm in the next section. Consistent with this, 
the short period of artificial pumping (Fig. 2d) contributed 
only a small amount to the mass balance; this loss is folded 
into the evaporation term for 1986–1988.

3.2 � The linear model

In the following section, we develop a linear version of the 
lake-level model. From it, we derive analytical solutions for 
the lake’s relaxation timescale, the relative importance of P 
and E, and the variance of the lake level in response to sto-
chastic climate forcing. The analytic expressions allow us 
to characterize the behavior of the lake without a complete 
knowledge of lake bathymetry and to clearly understand 
the parameters that drive the lake-level responses to climate 
variations.

Equation (3) is linearized by rewriting all time-varying 
fields using overbars to denote long-term means, and primes 
to denote anomalies from that mean: P(t) ≡ P̄ + P′(t), 
E(t) ≡ Ē + E′(t), I(t) ≡ Ī + I ′(t), AL(t) ≡ Āl + A′

L(t), and 
h(t) ≡ h̄+ h′(t).

Using Eqs. (4) and (5) for Ī and I ′, Eq. (3) becomes:

Table 1   Parameters and historical values describing the GSL’s lake-
level and climatic history

See text for sources

Variable Historical GSL value

VL Lake volume 20 km3

Ab Catchment basin area 5.5× 104 km2

Āl Mean lake area 4300 km2

σAl SD lake area 840 km2

z̄ Mean lake depth 10 m

h̄ Mean lake level 1280.4 m a.s.l.

σh SD lake level 1.14 m

P̄ Mean precipitation rate 0.37m year−1

σP SD precipitation rate 0.08m year−1

Ē Mean evaporation rate 1.00m year−1

σE SD evaporation rate 0.10m year−1

α % of basin’s precip. flowing to lake 
(mean)

0.13

γ % of basin’s precip. flowing to lake 
(variance)

0.40

τ e-folding time scale 8 years
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Because AL is a function of h, we rewrite it using a first-
order Taylor Series expansion:

Substituting dĀl
dh

h′ for A′

l, and considering only first-order 
terms, Eq. (6) becomes:

where

The value for τ represents the characteristic, e-folding time-
scale on which perturbations in lake level will relax towards 
the mean. A large ĀL implies that τ will also be large, 
because, all else being equal, for a given h′, there is a large 
anomalous volume, ĀLh

′, that must be either filled or evap-
orated to return to equilibrium. A large value of dĀ/dh is 
associated with smaller τ, because it means that an increase 
in h′ leads to a large increase in evaporating area, enabling 
the excess volume of water to be more rapidly removed. 
Likewise, a decrease in h′ significantly decreases the evapo-
rating area, reducing the total evaporation, and allowing the 
lake to return more rapidly to equilibrium. Finally, a large 
difference between Ē and P̄(1− α) indicates that the lake 
is in an arid region, and that the restoring tendency of E is 
relatively efficient. Aridity, therefore, also tends to shorten 
the response time of a lake. However as we discuss below, 
in a given setting these three factors influencing τ cannot be 
considered independent of each other.

The GSL is a large, shallow lake in an arid environment 
and so there are trade-offs between the factors that deter-
mine τ. For the values shown in Table 1, Eq.  (9) predicts 
that τ = 11 years. Our τ falls within the range of 4–17 years 
cited by Mason et al. (1994), who estimate several equilib-
rium e-folding response times for different historical levels 
of the GSL. Further, our value for τ compares quite well 
with the e-folding time suggested from observations (8 
years, Fig. 3).

From Eq. (9), we see that τ is a function of the mean lake 
level (since ĀL and dĀL

dh
 are functions of h), and the mean 

(6)

d(h̄+ h′)

dt

=
1

(ĀL + A′

L
)

[

(P̄ + P
′)(ĀL + A

′

L)

+ (αP̄ + γP′)(AB − (ĀL + A
′

L))

− (Ē + E
′)(ĀL + A

′

L)
]

.

(7)AL(h) = AL(h̄+ h
′) = AL(h̄)+

dAL(h̄)

dh
h
′
≡ ĀL +

dĀL

dh
h
′
.

(8)
dh′

dt
+

h′

τ
=

[

1− γ +
γAB

ĀL

]

P′
− E′,

(9)τ =
ĀL

dĀL
dh

(Ē − P̄(1− α))
.

climatic setting. τ is therefore a function of a particular 
mean state of the lake. The black line in Fig. 5 shows how τ 
varies with h̄ for the GSL, keeping Ē, P̄, and α fixed. Over 
the historical range of GSL lake levels (1277.5–1283.8 m 
a.sl.), τ ranges from as low as 5 years at 1280 m a.s.l., to as 
long as 26 years at the historical high. The 5-year response 
time is due to a large value of dĀL/dh, indicating that the 
basin area is changing rapidly at these elevations (evi-
dent in Fig.  1b). The 26-year response time corresponds 
to a large value for ĀL, as well as a relatively small value 
for dAL/dh. The timescale plummets for elevations above 
1284 m a.sl., because dAL/dh increases, allowing the lake 
to quickly adjust to anomalies in the water balance.

However, it is not consistent to vary h̄ independently, 
since a long-term lake-level change also requires an 
accompanying change in P̄ or Ē to maintain the new 
mean lake level. For example, an increase in ĀL only 
happens if also accompanied by a decrease in Ē or an 
increase in P̄. These both work in the same direction as 
an increase in ĀL, acting to increase τ. Thus, it is more 
realistic to constrain τ through consistent combinations 
of h̄, P̄, and Ē that ensure the lake is in equilibrium (i.e. 
dV
dt

= 0 for a given h̄). Figure 5 shows two examples. For 
the first (blue line), we vary P̄ keeping Ē fixed, so that 
dV
dt

= 0 in Eq.  3. For the second (red line) we vary Ē, 
keeping P̄ fixed.

When the parameters covary like this, the basic pattern 
of the variation of response time with lake level is the same 
as varying h̄ on its own. However, confirming the reasoning 

1272 1274 1276 1278 1280 1282 1284
0

10

20

30

40

τ 
(y

ea
rs

)

Elevation (m)

Fig. 5   The e-folding timescale of the GSL, τ, calculated from Eq. 9, 
for different lake-level elevations. Each h̄ corresponds to a specific ĀL 
and dĀL

dh
. The black curve holds Ē and P̄ constant, varying only h̄ and 

its associated ĀL and dĀL
dh

 to vary. However, from Eq. (9), a change in 
the mean precipitation or evaporation affects τ directly, as a param-
eter in the equation, and indirectly, by modifying the mean area of 
the lake. The blue curve holds Ē constant, and associates an increase 
(decrease) in P̄ with an increase (decrease) in lake level and lake 
area, providing a more physically consistent range of values for τ.  
Similarly, the red curve holds P̄ constant, and associates an increase 
(decrease) in Ē with a decrease (increase) in lake level and lake area
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given above, the variations in τ are amplified. τ reaches 41 
years for h̄ = 1284 m a.sl., when h̄ and Ē covary (Fig. 5).

Despite the large changes in τ as a function of h̄,  
the linear model (Eq.   8) does a remarkably good job 
of emulating the historical lake level record when it is 
driven by the historical variations in P′ and E′ (Fig. 2a). 
The correlation with the observations is 0.83, only 
slightly smaller than that for the full model. The results 
lend confidence that we can use the linear model to 
derive analytical expressions for some useful metrics of 
the lake response.

3.2.1 � Response to step changes in P and E

Let ∆E be a step-change in evaporation rate. From Eq. (8), 
and assuming P′

= 0, the resulting equilibrium change in 
lake level (i.e., when dh/dt = 0) is

Similarly, for a step-change in the precipitation rate, ∆P, 
the resulting change is

A simple measure of the relative importance of P and E for 
the lake level is the ratio of ∆hE and ∆hP:

In other words, R∆h is proportional to the ratio of the two 
climate changes, modified by the lake geometry and evapo-
transpiration in the catchment basin.

3.2.2 � Standard deviation in lake level

As was argued in the introduction, and as was supported by 
an analysis of the instrumental climate record, a sensible null 
hypothesis is that interannual climate variability can be char-
acterized by stochastic, normally-distributed white noise, with 
standard deviations in P′ and E′ of σP and σE respectively.

Analytical solutions for the standard deviation in lake 
response, σL, can be derived for the lake-level response to 
the stochastic variability from Eq. (8), and are presented in 
the “Appendix”. For lake-level variability driven by E′(t) 
alone, we find

Lake-level variability driven by P′(t) alone is

(10)∆hE = −τ∆E.

(11)∆hP =

[

1− γ +
γAB

ĀL

]

τ∆P.

(12)R∆h =

∣

∣

∣

∣

∆hE

∆hP

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−∆E
(

1− γ +
γAB
ĀL

)

∆P

∣

∣

∣

∣

∣

∣

.

(13)σhE = σE

√

∆tτ

2
.

(14)σhP = σP

[

1− γ +
γAB

ĀL

]

√

∆tτ

2
.

Combining Eqs. (13) and (14), we get:

For the GSL, σhP = 1.04 m, σhE = 0.24 m, and 
σh = 1.07 m, meaning that P′ contributes 95 % of the vari-
ance in fluctuations in h′. This confirms our earlier result 
(Fig.  2a), that lake level fluctuations in the GSL are pre-
dominantly driven by precipitation variability. A more com-
prehensive study of lake geometry and climatic conditions 
would be needed to establish whether this is generally true, 
or whether under some conditions evaporation variability 
dominates. The predominant importance of precipitation 
and inflow for the GSL is also noted by Mohammed and 
Tarboton (2012). The dominance of precipitation has also 
been shown for East African lakes (Hastenrath and Kutz-
bach 1983), and is therefore not unique to the GSL.

Finally, although we have assumed normally distributed 
white noise in agreement with observations, we note that it 
would be possible to incorporate skewness or higher statis-
tical moments into the forcing distributions. At least for the 
linear model the shape of the probability distribution func-
tion (PDF) of the climate forcing is directly transferred into 
the shape of the PDF in the lake-level response.

4 � Statistics of long‑term variability for the Great 
Salt Lake

To this point, we have demonstrated that both the full and 
linear models can capture the general behavior of the GSL’s 
historical lake-level variations. We now turn to characteriz-
ing the lake’s behavior beyond the historical record: its vari-
ance; power spectrum; lake-level threshold-crossing prob-
abilities; and evaluating the analytical expressions derived 
from the linear model, when forced with stochastic climate 
variations. The differences between the models highlight the 
capacity of the analytic solutions to describe the behavior of 
the lake, and the degree to which changes in the geometry 
of the lake basin and bathymetry are important.
We force the full and linear models with long (106 year) 
realizations of P′(t) and E′(t) generated from normally dis-
tributed, white-noise processes that have the same mean 
and variance as the observations (detailed in Table  1). A 
300-year snapshot of the resulting lake-level time series is 
shown in Fig. 6a, with the full model in grey, and the linear 
model in blue. The full time series correlate highly with one 
another (r = 0.89), but there are also notable differences. 
For example, because the full model resolves changes in 
dĀL
dh

, which decreases below the present lake level, the full 
model’s response time is longer at lake levels just slightly 
lower than the mean lake level. Therefore, the full model’s 
lake level is consistently lower than that of the linear.

(15)σ 2
h = σ 2

hE + σ 2
hP.



Response of closed basin lakes to interannual climate variability

1 3

4.1 � Standard deviations

For the full model, we find σh = 1.0 m, in close agreement 
with the linear model (σh = 1.1 m). The PDFs are shown 
in Fig. 7a. The PDF of the lake levels for the linear model 
is normal by construction, but the actual hypsometry of the 
GSL introduces a significant degree of skewness in the full 
model (skewness = −0.2; kurtosis = 3.4). Therefore, the 
full model is not consistent with a normal distribution (at 
p = 0.05, based on a Kolmogorov-Smirnov test [e.g. von 
Storch and Zwiers 2001)].

Relative to the mean, the full model’s lake-area extremes 
are skewed towards negative excursions (Fig. 7b). The area 
that is associated with +3σh is 6000 km2, and covers about 
2.5 times the area associated with −3σh, 2300 km2 (Fig. 7c, 
d). This range is comparable to the difference between 
the highest and lowest areas in the historical record, and 

describe the expected extremes seen in a thousand-year 
period, if there was no climatic change.

4.2 � Power spectral density

The power spectra of lake level for the models and the his-
torical record are shown in Fig.  6b. The spectrum for the 
linear model is calculated using a standard formula for 
Eq. (8) (e.g. Box et al. 2013), which applies to frequencies 
0 ≤ f ≤ 1

2∆t
:

where P(f ) is the power spectral density, P0 = 4τσ 2
h , and 

σh is taken from the linearized model (i.e., Eq. 15).
The area beneath the power spectrum is the variance of 

the time series, and so the similarity of the power spectra 
of the full and linear models is consistent with their values 
for σh also being similar. There are however some notewor-
thy differences between the models and the observations. 
While the spectral power at low frequencies is quite simi-
lar, the observations are more damped than the models at 
high frequencies.

The power spectrum is the Fourier transform of the auto-
correlation function (e.g. Box et  al. 2013). Therefore the 
extra damping at high frequencies in observations above 
that predicted by Eq.  (16) is consistent with the observed 
autocorrelations at short lags being higher than predicted 
by a simple exponential function (Fig.  3). Similar behav-
ior was found recently for the glaciers by Roe and Baker 
(2014).

For the GSL, these results suggests that neither Eq. (3) 
nor Eq. (8) are complete descriptions of the lake response. 
In particular, groundwater dynamics likely impacts lake-
level variability at higher frequencies. Further develop-
ment of the model might better emulate the observed 
autocorrelation/power spectrum structure. These differ-
ences notwithstanding, the results confirm the basic prin-
ciple embodied in the models. For the historical record, 
persistence in lake level fluctuations is associated with 
the memory of the lake system, rather than persistence in 
climate.

4.3 � Threshold crossing statistics

Often it is the extrema of lake level (i.e. a flood or extreme 
lowering) that have the highest impacts on water resources 
and are most evident in proxy records. A metric of par-
ticular importance then, is the likelihood that a given lake 
level is reached in a given period of time. Given interan-
nual climate variability, the question is inherently a statisti-
cal one. For the full model, the statistics can be estimated 

(16)P(f ) =
P0(

∆t
τ
)2

1− 2(1− ∆t
τ
) cos(2π f∆t)+ (1− ∆t

τ
)2
,
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Fig. 6   Long-term climate statistics. a A 300-year time slice of the 
full (grey) and linear (blue) lake-level model output, forced by sto-
chastic variations in precipitation and evaporation. The two models 
are highly correlated (r = 0.89). b The power spectra of the models 
and historical data (in black). The linear curve is calculated follow-
ing Box et al. (2013). The full model’s spectrum was computed with 
a Hanning Window length of ten-thousand, with no overlap between 
the windows. The historical data’s error bar is shown in the top right 
corner, with the horizontal line marking the intersection with the 
curve. Because full model was run for a million time steps, its error is 
negligible. The models capture variability well on timescales of dec-
ades or longer, but overestimate the variability at higher frequencies
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from the long idealized simulations of lake level. For the 
linear model, the statistics can be derived analytically from 
the statistics of a Poisson distribution (e.g. von Storch and 
Zwiers 2001; Roe 2011). The probability of the lake level 
exceeding a given threshold, h0, above or below the long-
term average at least once in a given interval of time, tf − ti,  
is given by:

Equation (17) shows that the longer the time interval (tf − ti),  
the higher the probability of exceeding a given threshold. 
This probability depends on τ, but is especially sensitive to 
the ratio of h0 and σh.

Figure  8a shows results for time intervals of of 100, 
500, and 1000  years. For the full model we randomly 
sample these intervals 105 times from the long model inte-
gration, and collate the statistics of how often a give lake 
level is crossed. As an example, for the full model, in any 
1000 years period it is extremely likely (98 %) to find the 
lake level exceeding 2 m above the average, and extremely 
unlikely (<1 %) to find the lake level exceeding 4m above 
the average.

(17)p(N(tf − ti) ≥ 1) = 1− exp

[

−
tf − ti

2π

(

2

τ∆t

)
1

2

e
−

1

2

(

h0
σh

)2
]

.

The threshold-crossing probability curves show that the 
full and linear models diverge at the extremes. For the lin-
ear model, the maxima and minima curves are symmetric 
about the mean lake level, as expected from the probabil-
ity distribution function of the lake levels (Fig. 7a). How-
ever, for the full model, a large lake-level minimum is more 
likely than a lake-level maximum of the same magnitude. 
This is also apparent in Fig. 6a, where the full model’s lake 
levels are consistently lower than those of the linear model, 
and in (Fig.  6b), which shows differences between the 
spectra of each model. Though the standard deviations of 
the models are quite close, the linear model overestimates 
the frequency of a lake-level maximum and underestimates 
the frequency of a lake-level minimum, relative to the full 
model.

Figure 8b shows the full model’s frequency-crossing dis-
tribution for the total excursion of a given time slice (i.e. 
the (maximum–minimum) values within (tf − ti)). This 
illustrates total expected spread in the the lake level on the 
order of 100, 500, or 1000  years. The GSL has a higher 
than 50 % probability of varying more than 4 m within a 
century; more than 5.5 m every 500 years; and more than 
6  m every millennium. Interestingly, Karl and Young 
(1986) inspected the return times for precipitation records 
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alone, and found that there was greater than 50 % probabil-
ity of having a wet spell as extreme as the 1986 floods in 
any hundred year period, with a return time of 120 years. 
The similarity between the high precipitation probability 
and flood probability is unsurprising, given how sensitive 
the lake is to changes in precipitation.

5 � Statistics of long‑term variability for alternative 
lake hypsometries

We have focused on the GSL because of its long lake-level 
history, relatively short response time, and detailed hypsomet-
ric information. However, the framework developed above 
can be used to characterize any closed-basin lake’s response 
to variations in the climate. This response will be dependent 
on the lake’s unique hypsometry and regional climate.
To understand the extent of geometric influence on the 
timescale and magnitude of lake-level variability, we create 
simple hypsometric profiles that are approximations to the 
bathymetry of three closed-basin lakes: the extensive and 
shallow GSL; the extensive and deep Lake Titicaca, on the 
border of Bolivia and Peru; and the areally small and deep 
Lake Bosumtwi in Ghana (Fig. 9a–c). In the following cal-
culations we do not try to simulate historical or projected 
future variations of these lakes, but aim to isolate the impact 
of different lake geometries on lake-level response. The sim-
ple functions used to describe the bathymetry allow dĀL/dh 
to vary smoothly, in turn, smoothing the lake-level response.

The GSL and Lake Titicaca’s hypsometric curves are 
concave down, and can be idealized as an inverted rectan-
gular pyramidal frustum:

(18)AL(h) = LW

(

h+ z0

z0 + z1

)2

,

where, again, AL is the lake area and h is the lake level. L 
and W are the length and width of the basin at some known 
elevation, z1, above the bottom of the frustum, and z0 is 
the vertical distance from the bottom of the frustum to the 
point that would complete a full pyramid.

Lake Bosumtwi’s hypsometric curve is concave up, and 
is idealized as a tri-axial half-ellipsoid:

where L, W and z0 are the lengths of the semi-principal x, y, 
and z axes, and h = 0 at z = z0. The values for each lake’s 
parameters are given in Table 2, and are compared with the 
known hypsometric profiles in Fig. 9.

Estimates for Ē and P̄ for lakes Titicaca and Bosumtwi 
are available from the literature [Table  2, Turner et  al. 
(1996); Richerson et  al. 1977)]. For each idealized lake 
geometry, we set α so as to match the modern lake levels. 
By analogy with the GSL, we set γ = 3α.

In order to focus solely on the impact of the different 
basin geometries on lake-level variability, we apply the 
same E′(t) and P′(t) to all three idealized lake geometries 
as were applied to the GSL (see Sect. 4). We integrate 
the full lake model (Eq. 3) with each of the idealized lake 
geometries, and use the linear model solutions to calculate 
τ, σh, and P(f ) for each lake. All parameters are provided in 
Table 2.

A 2000-year slice of each lake’s time series is shown 
in Fig. 9d. It is clear that the lakes respond to the same 
perturbations at different timescales and with different 
amplitudes. The analytic solutions to the linear model 
allow us to link the differences in lake response to each 
lake’s parameter values.

(19)AL(h) = πLW

(

1−
(z0 − h)2

z20

)
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5.1 � Response time

The response time for each lake is calculated using 
Eq.  (9). The idealized GSL has the fastest response 
time, with a τ = 10 years, because of its large dĀL/dh.  
The shape of Lake Bosumtwi is very different, with 
a relatively small area of 48 km2, but a modern depth 
of 79 m. Its geometry means that if Lake Bosumtwi 
experiences a brief increase in P, the lake level will 
increase, but the lake’s surface area only increases 
slightly. Hence, it takes many years for a steady Ē 
to remove the excess water and return the lake to its 
original level. Therefore, though the surface area of 
Lake Bosumtwi is much smaller than that of Lake 
Titicaca or the GSL, its small dĀL/dh gives the lake 
a long memory, with an e-folding time of 209 years. 
Lake Titicaca is much larger (ĀL = 6700 km2) and 
deeper (h̄ = 280) than the GSL or Lake Bosumtwi. 
However, Lake Titicaca’s ratio of ĀL : dĀL/dh, and 
therefore its τ (=201 years), is similar to that of Lake 
Bosumtwi.

The mean climatic differences (P̄, Ē) also affect τ,  
as does the ratio of ĀL and AB, through the α needed to 

Fig. 9   Alternative geometry 
experiments. The simplified 
geometries (a frustum or 
half-ellipsoid, shown in color) 
for the Great Salt Lake (a) 
Lake Titicaca (b), and Lake 
Bosumtwi (c), over their 
hypsometric curves (shown 
in black). The hypsometric 
curves are interpolated from 
Turner et al. (1996) (Bosumtwi) 
and Richerson et al. (1977) 
(Titicaca). The crosses mark the 
present-day lake levels for each 
of the lakes. d A 2000-year time 
slice from the long-term alterna-
tive lake model runs, showing 
the diverging behavior of the 
three lakes. e The power spectra 
of the lakes. The full models 
are noisier, while the analytic 
solutions to the linear model are 
overlain above
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Table 2   Parameters, and model outputs for the simplified geometry 
experiments

Lake Bosumtwi’s climate variables are from Turner et  al. (1996), 
and Lake Titicaca’s are from Richerson et  al. (1977). σP and σE for 
all three lakes are, by experimental design, equal to the GSL’s: these 
numbers are inaccurate, and should not be used in other studies

GSL Bosumtwi Titicaca

z 14 192 400 m

L 150 5 150 km

W 50 4.7 80 km

Ab 55,000 72 58,000 km2

Āl 4600 48 6700 km2

dĀl/dh 665 0.45 38 km2 m−1

h̄ 9 79 280 m

σh 1.1 1.7 4.0 m

P̄ 0.37 1.38 0.80 m year−1

σP 0.08 0.08 0.08 m year−1

Ē 1.0 1.55 1.58 m year−1

σE 0.1 0.1 0.1 m year−1

α 0.16 0.25 0.13 –

γ 0.47 0.75 0.38 –

τ 10 209 201 year
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maintain the modern lake level. These effects are, however, 
of secondary importance to the basin hypsometry.

The hypsometry of the lake, then, is the main control 
over the response time of the lake, which, in turn, deter-
mines the integration of the climatic history in the lake-
level record.

5.2 � Standard deviations

For the idealized GSL geometry, σh = 1.1  m for both the 
full and models, which is very similar to the values for 
the original model runs. Lake Bosumtwi’s σh is compara-
ble, with σh = 1.7 m for both models. The reason that σh is 
similar for Lake Bosumtwi and the GSL is because τ and 
basin geometry compensate one another (Eq. 15): while τ is 
much larger for Bosumtwi than the GSL, the ratio of AB/ĀL 
is much smaller. Lake Titicaca, with a large values for both 
τ and AB/ĀL, exhibits the largest values for σh − 4.0 m for 
both models.

5.3 � Power spectrum

Figure  9e shows the lake-level power spectra for each of 
the three lakes. The P(f )s from Eq.  (16) are also shown. 
The GSL has more power at high frequencies than Lake 
Bosumtwi or Lake Titicaca, with their long response times. 
Lake Bosumtwi and Lake Titicaca, which have similar val-
ues for τ, have similar spectral shapes, though Titicaca has 
more power at all frequencies, simply because its variance 
is greater. The smaller τ and lower overall variance for GSL 
means that it asymptotes more rapidly and to a lower value 
of P(f ) at low frequencies.

Mason et al. (1994) show that the high-frequency com-
ponent of lake-level variability is proportional to Ē − P̄ and 
the ratio of ĀL to AB, while the low-frequency component 
is proportional to τ, Ē − P̄, and the ratio of ĀL to AB. Our 
findings corroborate this, since Titicaca and Bosumtwi, 
with their similar values for τ have spectra that diverge 
from the GSL’s at low frequencies. Similarly, the spectra of 
the GSL and Titicaca are more similar at high frequencies, 
because their Ē − P̄, and the ratio of ĀL to AB are more 
comparable.

6 � Summary and discussion

In this study we have sought to characterize and under-
stand the response of lake level and lake area to the 
year-to-year fluctuations in precipitation and evapo-
ration that are intrinsic to a constant climate. We have 
focussed especially on the case study of the Great 
Salt Lake (GSL), because of the availability of long 

observational records of inflow, evaporation, and lake 
level, and because of an extensive literature on GSL (e.g. 
Mann et al. 1995; Abarbanel et al. 1996; Lall et al. 1996; 
Loving et  al. 2000; Mohammed and Tarboton 2011, 
2012). From the available meteorological and hydrologi-
cal observations, we showed that the climate variabil-
ity that drives GSL lake level is mostly consistent with 
normally-distributed white noise, the exception being 
that slight interannual persistence was indicated for pre-
cipitation. It is well established that lakes have an intrin-
sic response time, or memory, that is a function of their 
geometry, hydrology, and climatic setting (e.g. Mason 
et al. 1994). A robust effect of this response time is that 
a lake will integrate the year-to-year climate fluctuations 
to produce persistent (multi-decadal to centennial) fluc-
tuations in lake level (Fig.  9). The effect of a system’s 
memory in producing persistence (or ‘reddening’) in 
the response is well known in other areas of climate sci-
ence (e.g. Hasselmann 1976; Oerlemans 2000) but to our 
knowledge has not been applied to the interpretations of 
past lake-level fluctuations.

We used both full water-balance and linear lake mod-
els calibrated to observations of the GSL, and showed 
that the historical (160 years) record of GSL lake level 
is largely consistent with the expected lake-level statis-
tics driven simply by the stochastic year-to-year climate 
fluctuations observed in the modern instrumental record. 
Therefore we conclude that interannual climate variabil-
ity has likely been an important driver of lake-level fluc-
tuations in recent millennia (e.g. Atwood 1994; Atwood 
and Mabey 2000).

While the lake models accurately capture the low-fre-
quency response of the historical record of the GSL, they 
both overestimate the high frequency response, suggesting 
that not everything in the lake-level response is captured. 
A more detailed analysis of the autocorrelation structure 
using auto-regressive moving-average (ARMA) modeling 
might reveal higher-order terms in the lake response. This 
approach was recently used by Roe and Baker (2014) 
to analyze glacier response. A likely source of additional 
damping at high frequencies is groundwater percolation, 
and adapting the model to account for it would be a useful 
next step.

The linear lake-level model performed compara-
bly well to the full model, and it provides some use-
ful analytic expressions for some important metrics of 
lake-level sensitivity: response time, relative importance 
of precipitation and evaporation, lake-level variance, 
power spectrum, and the expected return time of lake-
level high stands. This last metric is particularly useful 
for evaluating the significance of past lake-level fluctua-
tions and, to our knowledge, is new to the lake literature. 
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The dependencies of these useful statistical metrics on 
geometry and climatic setting are transparent. For many 
purposes the linear model may be the best approach: 
uncertainties in climatic forcing and evapotranspiration 
are likely to be larger source of error in modeling lake 
response than the model itself. Thus, a more compli-
cated model may not be justified for characterizing the 
response to interannual variations in climate.

However, one important difference between the full and 
linear models is that the linear model has a normally dis-
tributed lake-level PDF because it is linear and because the 
climate variability PDF was assumed normal, consistent 
with observations. It does not capture the negative skew-
ness of the full model’s lake-level PDF (Fig.  7a), which 
arises from changes in the lake hypsometry slope as a func-
tion of lake level (i.e., Figs. 1b, 9a–c). The PDFs of area for 
both models are non-normal because of the lake hypsom-
etry. Thus, it is important to evaluate the possible impact of 
changing hypsometry when characterizing the behavior of 
lake response.

Our case study of the GSL established the robust princi-
ple that persistent lake-level fluctuations will occur even in 
a climate with no persistence. We then repeated our mod-
eling exercises on idealized bathymetries of the GSL, Lake 
Titicaca, and Lake Bosumtwi, in order to isolate the effect of 
geometry. We found a remarkable range of time scales are 
implicated: from ten years for the GSL to ∼200 years for Titi-
caca and Bosumtwi. The differences can be attributed to the 
specific parameters that set τ and σh. The timescale is propor-
tional to the lake’s area, and is inversely proportional to its 
aridity and dAL/dh. The amplitude of variations is a function 
of τ, but it is also modified by the ratio of the basin area to the 
lake area. Idealized geometries, such as the frustum and half-
ellipsoid, and linear models are an efficient way of charac-
terizing uncertainty analyses when working with lakes whose 
bathymetry is not well characterized, when analyzing many 
lakes, or for preliminary field-work plans.

Finally, while our main emphasis has been on build-
ing tools for interpreting past lake-level changes, there are 
implications for predictions of future changes. In essence 
we have sought to characterize a lake’s natural variabil-
ity—that is, the lake-level fluctuations that occur in a 
constant climate (i.e., absent any external climate forcing 
normally considered as changes in CO2, volcanoes, solar 
output). The magnitude of this natural variability essen-
tially sets the irreducible lower bound on the predictabil-
ity of the future (e.g. Hawkins and Sutton 2009; Deser 
et  al. 2012). Our estimates and models can be used as a 
guide for that lower bound, but should only applied with 
caution: changing groundwater and land usage, chang-
ing PDFs of precipitation and drought, and changing 
lake hypsometry as a function of mean lake-level are all 
important factors to consider.
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Appendix: Standard deviations in lake level

Discretizing Eq. (8) in to time increments, ∆t, and setting 
P′

= 0, gives

We set E′
t = σEνt, where νt is a normally distributed, sto-

chastic white noise process. The variance of h′t is the 
expected value of h′2t , and is given by

The following relationships hold: �νth′t� = 0, �h′2t � = �h′2t−1�,  
and �ν2t � = 1. Upon substitution, and taking the limit of 
∆t << τ we obtain:

Therefore,

Similarly for lake-level variability due to P′(t) alone:

Provided that P′ and E′ are not correlated the variances can 
be combined as:
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