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The remote impacts of climate feedbacks on
regional climate predictability
Gerard H. Roe1*, Nicole Feldl2, Kyle C. Armour3, Yen-Ting Hwang4 and Dargan M.W. Frierson5

Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model
di�erences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that
are caused by changes in clouds, water vapour, surface albedo, and other factors, in response to an external climate
forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate
feedbacks aggregate into a regional and global climate response. Here we present a simple, moist energy balance model that
combines regional feedbacks and the di�usion of both latent and sensible heat. Our model emulates the relationship between
regional feedbacks and temperature response in more comprehensive climate models; the model can therefore be used to
understand how uncertainty in feedback patterns drives uncertainty in the patterns of temperature response. We find that
whereas uncertainty in tropical feedbacks induces a global response, the impact of uncertainty in polar feedbacks remains
predominantly regionally confined.

Acentral concept in climate science is that the response to
a perturbation can be partitioned into individual climate
feedbacks. Early studies borrowed the formal language

of feedback analysis from control-systems theory, and combined
estimates of all major atmospheric feedbacks to predict the global
climate sensitivity to radiative forcing1–3. Such studies illustrate
a central purpose of feedback analysis: it is a powerful method
for combining the effects of very different physical processes. In
turn this facilitates an important uncertainty analysis: how does
uncertainty in the strength of different feedbacks translate into
uncertainty in the system response?

An extension of this global-scale work is to characterize regional-
feedback patterns, to provide insight into the relative importance
of different processes for regional responses. For example, how
do subtropical cloud feedbacks affect polar amplification? One
widely shared goal is to identify which feedbacks contribute
most uncertainty to the temperature response, thereby offering a
path to reducing uncertainty in future-climate projections from
comprehensive general circulation models (GCMs). Indeed it is
hard to imagine how projections can be improved without better
constraints on regional feedbacks.

Analyses show broad spreads of feedback patterns amongGCMs.
For the zonal-mean net feedback (measured in Wm−2 K−1, see
equation (1)), the spread among 12 models from the third Coupled
Model Intercomparison Project4 (CMIP3) exceeds the multi-model
mean at nearly all latitudes, with the spread in shortwave cloud
feedback the largest contribution5. Several other studies also
conclude low-level cloud changes constitute the greatest source of
variation among GCMs (refs 6,7).

What to make of this spread in feedback patterns and how
to relate it to the range of temperature responses? At any
location subject to a climate forcing, the energy budget equilibrates

via climate feedbacks modifying the top-of-atmosphere (TOA)
radiative fluxes and changes in horizontal energy transport
(atmospheric and oceanic). In physical terms, a positive-feedback
region is less efficient in radiatively adjusting than a negative-
feedback region. Therefore, all else being equal, the system exports
energy from positive- to negative-feedback regions. This was
demonstrated in detail for an aquaplanet GCM (ref. 8) and within
the CMIP3 and CMIP5 ensembles5,9. However, these studies just
diagnosed patterns of radiative fluxes and transport, and do not
explain the pattern of the response.

A path forward is suggested by a study that sought to understand
energy-transport changes among the CMIP3 ensemble10. After
accounting for differences in the surface and TOA fluxes due to
clouds and surface albedo, they show the inter-model spread in
energy-transport changes is predicted well by an energy balance
model diffusing low-level moist static energy (MSE), a formulation
accounting for both sensible- and latent-heat changes11. The result
is important: despite all the structural and parametric differences
among highly complex GCMs, a simple principle governs their
underlying behaviour. A similar model, diffusing a linearized
version of MSE, emulates the response of aquaplanet GCMs forced
with patterns of ocean heat uptake12.

Collectively these studies indicate that the pattern of the
temperature response can be predicted from the pattern of change in
the TOA fluxes and the down-gradient transport of MSE anomalies.
We employ an extension of this moist static energy balance model
(MEBM) to address two issues. First, we show how the pattern
of feedbacks controls the pattern of temperature response, finding
that the MEBM successfully emulates an aquaplanet GCM, both
with and without ice-albedo feedback. Second, we demonstrate how
uncertainty in the pattern of feedbacks drives uncertainty in the
pattern of the response.
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Figure 1 | The relationship between feedback patterns and climate response in aquaplanet GCM simulations. a, Total feedback (solid), surface-albedo
feedback suppressed (dashed). b, Individual, locally defined Planck response (Pl), lapse-rate (Lr), surface-albedo (Alb), water-vapour (Wv) and cloud (Cl)
feedbacks, modified from ref. 17 to include a logarithmic dependence of water-vapour feedback (ref. 41). c, Changes in the convergence/divergence of heat
transport after CO2 doubling. d, Temperature response for a CO2 doubling, with global mean indicated with arrows. Latitude axes are presented in
equal-area increments in all figures.

The local and nonlocal impacts of climate feedbacks
Let T ′(x) be the annual-mean, near-surface air temperature
response to a forcing, Rf (x), as a function of the sine latitude, x . In
equilibrium this forcing is balanced by changes in atmospheric and
oceanic heat-flux divergence, ∇·F′(x), plus the sum of fluxes from
radiative feedbacks,

∑
i ci(x)T ′(x)—the first-order terms in a Taylor

series of the TOA radiative response to warming.

−Rf (x)=−∇·F′ (x)+
N∑
i=1

ci (x)T ′ (x) (1)

Neglecting the second-order and higher terms in theTaylor series
is conventional in feedback analysis and is justified, at least for
anthropogenic climate-change scenarios, on the basis of detailed
analyses of climate models8,13–16. The nature of the temperature
response and the feedbacks (that is, the coefficients ci(x)) that drive
it are most clearly elucidated in GCMs configured for idealized
experiments. Figure 1 shows the feedback, transport changes and
surface-temperature response to a CO2 doubling in a mixed-layer
aquaplanet version of the Geophysical Fluid Dynamics Laboratory
(GFDL) AM2 model, an atmospheric GCM configured here with
simple thermodynamic sea ice8,17. The ci(x) values were calculated
using the radiative-kernel method8,14,17 which best approximates
the tangent-linear ideal of the Taylor series (equation (1)) and
includes Planck, water-vapour, surface-albedo, lapse-rate and cloud
feedbacks. We note that feedbacks are defined here relative to the
local, rather than the global-mean, temperature17–20.

The pattern of heat-transport changes (solid line, Fig. 1c) bears a
striking similarity to the pattern of net feedback (solid line, Fig. 1a):
energy fluxes diverge from the subtropics owing to strongly positive
water-vapour and cloud feedbacks (Fig. 1b), and converge into
midlatitudes where feedbacks are more negative. Energy fluxes also
diverge from positive feedbacks at the ice line, resulting in energy
convergence polewards of the ice line. This convergence is the

largest contribution to the temperature response at high latitudes,
although other feedbacks also matter, notably a positive lapse-rate
feedback due to near-surface-temperature inversions (Fig. 1b)8,17,21.
The similarity between ∇ · F′(x) and

∑
i ci (x) , both diagnosed

from the GCM, also demonstrates the ability of the linear feedback
framework (that is, equation (1)) to describe the changes in the TOA
energy budget in the GCM.

Another experiment is performed here, suppressing the surface-
albedo feedback by fixing the ice line22 (dashed lines, Fig. 1).
The results are remarkable. Removing the surface-albedo feedback
results in only a small change in the overall feedback pattern
(Fig. 1a), and the biggest difference in transport changes is the
loss of the high-latitude dipole of heat-flux divergence/convergence
(Fig. 1c). However, despite these apparently minor differences, the
global-mean temperature response is nearly halved (from 4.75 ◦C
to 2.68 ◦C, Fig. 1d), and there is a marked reduction in polar
amplification. Evidently this local feedback drives significant local
and nonlocal responses. Although striking, these results conform to
the basic principle that systems of strongly positive feedbacks are
acutely sensitive to small changes in feedback strength2,23.

The importance of MSE
The latent heat associated with water-vapour changes is central
to the climate response, and can be characterized using the near-
surface MSE (h′ ≡ cpT ′ + Lvq′; cp is specific heat at constant
pressure, T ′ is annual-mean temperature change, Lv is latent heat of
vaporization and q′ is change in specific humidity). For fixed relative
humidity (assumed 80%), q′ is governed by the Clausius–Clapeyron
relation, and is a sensitive function of T ′.

At 30 ◦C, a warming of T ′=1 ◦C corresponds to h′≈4,000 J kg−1,
whereas at −20 ◦C that same 1 ◦C warming yields only
h′≈1,100 J kg−1. In other words, owing to the climatological
pole-to-equator temperature gradient, there is inevitably a strong
weighting of h′ towards the tropics.
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Figure 2 | The climate response in the moist energy balance model for three di�erent, stylized feedback patterns. a, Feedback patterns. b, Change in
heat-transport convergence/divergence (∇·F′). c, Change in temperature, T′. d, Change in MSE, h′. For the three experiments the global-mean
temperature increases are 1.9, 3.9, and 5.3 ◦C respectively.

A reasonable starting point is to suppose a down-gradient flux
of h′ anomalies, the simplest formulation for which is Fickian
diffusion: F′ =−D∇h′, where D is a constant11,24. Mixing-length
theory suggests D is proportional to a length scale times a velocity
scale25. Both change relatively slowly under climate change26,27,
justifying a diffusivity that remains constant. For zonal-mean fields
on a sphere, this yields

∇·F′=−D
d
dx
(
1−x2) dh′

dx
(2)

Equation (2) is intended to characterize atmospheric heat
transport. Changes in oceanic heat uptake evolve slowly, and so can
be conceived of as a forcing term on the atmosphere, and subsumed
into Rf (x), although it must be established that the pattern of
atmospheric feedbacks remains robust12,20. Equations (1) and (2)
constitute an idealized MEBM that can be solved for the pattern
of temperature response, T ′(x), as a function of the patterns of
Rf (x) and the coefficients ci(x). To focus on the feedback patterns,
we set constant Rf = 4Wm−2 and use D= 2.6× 10−4 kgm−2 s−1
throughout10. We note that classic energy balance climate models28
diffuse only sensible heat (that is, cpT ′) and behave very differently
from the MEBM; and whereas in ref. 10 the ci(x)T ′(x) terms in
equation (1) are diagnosed from CMIP3 CGMs, here only the ci(x)
values are stipulated and T ′(x) is calculated self-consistently within
the MEBM.

Even for spatially uniform feedbacks, the MEBM exhibits
substantial polar amplification (blue lines, Fig. 2): larger h′
anomalies in the moist tropics drive a poleward energy flux11, and
the resulting extratropical convergence generates larger T ′ there
(Fig. 2b,c).

We next impose broad zones of positive subtropical feedbacks,
similar in form to those in the aquaplanet GCM (Fig. 1a), which
approximately double the global-mean temperature response (red

line with circle symbols, Fig. 2). Further, where
∑

ci(x) > 0 the
system is locally unstable, and it must adjust by exporting h′
(Fig. 2b): strong subtropical divergence (a cooling tendency)must be
matched by extratropical convergence (a warming tendency). These
transport changes can be accomplished with relatively small tropical
temperature changes because the q′ there leads to large changes in h′
(Fig. 2c,d). Thus, even when strong local feedbacks in the subtropics
favour a large local response, their nonlocal impact maintains a
slight degree of polar amplification.

Last, we introduce another, narrow band of positive feedbacks
at 65◦ latitude (black lines, Fig. 2), representative of ice-albedo feed-
back at an ice line. This local feedback drives a large local divergence
of energy, balanced by convergence predominantly polewards of the
ice line (Fig. 2b,d). Owing to the low temperatures at these latitudes,
q′ contributes little to h′, and so the convergence produces a large
change in T ′ (∼ 8 ◦C) and strong polar amplification.

TheMEBM thusmirrors the aquaplanet GCM: feedback patterns
drive both a local response and a change in heat-flux divergence;
the strong tropical weighting of h′ leads to increased poleward
energy fluxes; and at high latitudes a large T ′ is required to
balance flux convergence changes because of the relative lack of
moisture there. It is the interplay among these tendencies that sets
the response. There are of course some differences; for instance,
the polar amplification is less pronounced in the MEBM without
ice-line albedo feedback. Our assumption of Fickian diffusion is
surely too simplistic to emulate every detail of the temperature
response—particularly where eddies are not dominant, such as in
the deep tropics—and we have used only stylized feedback patterns.
Nevertheless, the basic similarities, together with the ability of the
MEBM to account for transport changes among ensembles of fully
coupled GCMs (refs 10,29,30), lend confidence it can be used to
infer the impact of uncertainty in the magnitude and pattern of
climate feedbacks on uncertainty in the magnitude and pattern of
the temperature response.
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Figure 3 | The impact of uncertainty in feedbacks patterns on uncertainty in temperature-response patterns in the moist energy balance model.
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Feedback uncertainty and regional predictability
We introduce feedback uncertainties into the MEBM, by stipulating
localized zones of Gaussian probability density functions (PDFs)
in the subtropics and poles. These are hypothetical, but guided by
GCM ensembles5.

Uncertainty in subtropical feedbacks (Fig. 3a) leads to
uncertainty in T ′ that is global and nearly uniform (Fig. 3b).
The feedback uncertainty induces large uncertainty in subtropical
h′, which is exported down gradient to mid- and high latitudes,
where it drives uncertainty in T ′. Therefore, reducing uncertainty in
tropical feedbacks would lead to a globally near-uniform reduction
of uncertainty in temperature response. At all latitudes, the PDF
is skewed towards higher T ′ (Fig. 3c) because larger positive
feedbacks destabilize the system23.

In contrast, uncertainty in polar feedbacks (Fig. 3d) leads to
uncertainty in T ′ confined largely to the poles (Fig. 3e): the
resulting variations in h′ are not large enough to overcome the
large-scale, down-gradient transport of h′ from the tropics, and
therefore distribute much less uncertainty into lower latitudes.
The implication is that a reduction of uncertainty in polar
feedbacks leads to a predominantly local reduction of uncertainty
in temperature response. Note, however, that even small changes
in tropical temperatures can impact other important aspects of
climate, such as the inter-tropical convergence zone and monsoon
circulations, and thus our results do not preclude polar feedbacks
exerting an influence on such climate features31,32.

Uncertainty in temperature response thus depends on both
the magnitude and spatial extent of the uncertainty in local
feedbacks. The feedback patterns in Fig. 3a,d reflect relatively
broad uncertainty within the subtropics (for example, due to
changes in clouds) and relatively narrow uncertainty near the
poles (for example, due to changes in the sea-ice edge)5. This
difference in spatial extent affects the uncertainty in global-mean
temperature response, with subtropical feedback uncertainty having
a stronger global influence than the high-latitude uncertainty (black
lines, Fig. 3c,f). However, for feedback uncertainty of equivalent

magnitude and area, it is the high latitudes that matter more for the
global mean (Supplementary Fig. 1); feedback uncertainty projects
most strongly onto the global-mean temperature response when it
coincides with a region of large temperature change and of more
positive local feedbacks—conditions that apply at high latitudes
(Fig. 3 and see Supplementary Information).

Internal (that is, unforced) climate variability is an important
uncertainty in regional climate projections on decadal timescales33.
On longer timescales two factors dominate uncertainty: the
anthropogenic-forcing scenario and structural differences among
GCMs (ref. 34). Several lines of research demonstrate that, on
such timescales, adjustments to Earth’s energy budget occur via
MSE fluxes driven by patterns of climate feedbacks. The simplest
implementation—the MEBM—accords with detailed feedback
calculations within a GCM: anomalous energy fluxes diverge
away from regions of more positive feedbacks, and converge
towards regions of more negative feedbacks. Although it will
be important to establish the limitations of the MEBM and
the linear feedback framework for larger climate changes35,36,
as well as the approximation that feedbacks can be described
locally (that is, independently of the pattern of warming itself),
it offers a single, consistent explanation for several fundamental
aspects of climate change pervasive among GCM simulations: a
general increase in poleward energy fluxes with global warming10,37;
strong polar amplification, but with large inter-model spread38;
and uncertainty in broad tropical feedbacks being the largest
source of uncertainty in the global temperature response7,39.
Other recent studies imply the principle also extends to transient
climate change, to more complete GCMs and, tentatively, to
zonally asymmetric feedbacks10,12,23,40. Collectively these studies
can be taken as implying that circulation changes may be of
secondary importance in redistributing energy under climate
change. The underlying principle does not depend on which
climate processes are acting, only on the overall pattern of
total climate feedback. However, by disaggregating the climate
response into its component feedbacks, the relative importance
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of particular processes for the local and nonlocal response can
be deciphered. Although the true patterns of the various climate
feedbacks remain elusive, understanding these connections is a
prerequisite for constraining uncertainty at regional scales, where
the environmental and societal impacts of global climate change are
predominantly experienced.

Received 8 August 2014; accepted 16 December 2014;
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