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ABSTRACT

Washington State’s CascadeMountains exhibit a strong orographic rain shadow, with much wetter western

slopes than eastern slopes due to prevailing westerly flow during the winter storm season. There is significant

interannual variability in the magnitude of this rain-shadow effect, however, which has important conse-

quences for water resource management, especially where water is a critically limited resource east of the

crest. Here the influence of the large-scale circulation on the Cascade rain shadow is investigated using ob-

servations from the Snowfall Telemetry (SNOTEL) monitoring network, supplemented by stream gauge

measurements. Two orthogonal indices are introduced as a basis set for representing variability in wintertime

Cascade precipitation. First, the total precipitation index is a measure of regionwide precipitation and ex-

plains the majority of the variance in wintertime precipitation everywhere. Second, the rain-shadow index is

a measure of the east–west precipitation gradient. It explains up to 31% of the variance west and east of the

crest. A significant correlation is found between the winter-mean rain shadow and ENSO, with weak (strong)

rain shadows associated with El Niño (La Niña). The analysis is supported by streamflow data from eastern

and western watersheds. A preliminary review of individual storms suggests that the strongest rain shadows

are associated with warm-sector events, while the weakest rain shadows occur during warm-frontal passages.

This is consistent with known changes in storm tracks associated with ENSO, and a variety of mechanisms

likely contribute.

1. Introduction

One of the most distinctive features of mountain cli-

mates is the ‘‘rain-shadow effect’’—the sharp decline in

precipitation often observed in the lee of mountain

ranges. In the midlatitudes where prevailing winds are

westerly, particularly strong rain shadows are associated

with mountain ranges oriented north–south, such as the

Sierra Nevada, the Cascades, the SouthernAlps, and the

southern Andes. In the lee of these ranges, annual pre-

cipitation is often an order of magnitude lower than at

the wettest locations upstream of their crests, leading to

significant ecological, hydrological, and economic dif-

ferences between eastern and western slopes.

The basic physics of the rain-shadow effect is well

known (e.g., Smith 1979; Roe 2005). On windward

slopes, ascending air expands and cools; if the air is

saturated, such ascent will force water vapor to con-

dense, enhancing precipitation. In the lee precipitation

is suppressed as descending air warms and extant liquid

water evaporates. Despite this simple picture, however,

the mechanisms controlling the strength of the rain

shadow (i.e., the magnitude of the east–west precip-

itation gradient) remain poorly understood. With the

exception of a few studies focused on extreme leeside

precipitation events in the SierraNevada (e.g.,Underwood

et al. 2009; Kaplan et al. 2009) and the Southern Alps
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(e.g., Sinclair et al. 1997; Chater and Sturman 1998),

there has been remarkably little research into what

controls rain-shadow strength, especially on interannual

time scales. Since the circulation is likely to change as

the planet warms (e.g., Selten 2004; Yin 2005), it is im-

portant to understand the controlling processes of rain-

shadow strength in more detail.

This paper represents a first step toward such an un-

derstanding, using the Cascades of Washington State as

a case study. We have chosen to focus on the Cascades

for two reasons. Firstly, the Cascade rain shadow is

among the strongest in the world, with annual pre-

cipitation of more than 4 m on many western ridges and

less than 25 cm in much of the Columbia River basin to

the east (Fig. 1). Secondly, variability in the amount and

distribution of Cascade precipitation can have impor-

tant societal consequences. With a climate of cool, wet

winters and warm, dry summers, the region derives

much of its water supply from winter snowpack. During

the summer dry season, snowmelt largely sustains the

region’s rivers and reservoirs, providing hydroelectric

power, irrigation water, spawning habitat for salmon,

and drinking water to several million people in the Puget

Sound and Columbia basin regions. A dry winter can

result in summer streamflows that are insufficient to

meet society’s needs, particularly in eastern watersheds

like the Yakima, where irrigation has transformed a

desert into the most productive agricultural region in the

state. An unusually dry winter in 2000/01, for example,

left the Yakima Valley with estimated crop losses of

$100 million (Scott et al. 2004).

Like any climate variable, wintertime precipitation in

the Cascades varies both in space and in time. On sea-

sonal time scales, spatial variability is often assumed to

be negligible, and a single time series is used for pre-

cipitation (or snowpack) over the entire Cascade range

(e.g., Serreze et al. 1999; Mote et al. 1999; Hayes et al.

2002; Casola et al. 2009; Stoelinga et al. 2010; Smoliak

et al. 2010). However, recent studies have shown that

this assumption may be flawed, at least when applied to

interannual variability in wintertime precipitation. For

example, in an analysis of 51 years of gridded precip-

itation data interpolated from the Cooperative Ob-

server (COOP) network, Leung et al. (2003) found that

the impact of the El Niño–SouthernOscillation (ENSO)

on wintertime precipitation differs east and west of the

Cascade crest, with warm (El Niño) episodes bringing

less precipitation to western Washington but more pre-

cipitation to eastern Washington, while cold (La Niña)

episodes have the opposite effect. Others have found

similar spatial variations in model forecasts of regional

climate change, with some models projecting drier

conditions for western slopes but wetter conditions for

eastern slopes in future winters (Salathé et al. 2010;

Zhang et al. 2011). These results imply that the spatial

distribution of wintertime Cascade precipitation is not

fixed and that the strength of the rain shadow, in par-

ticular, varies in response to natural and anthropogenic

changes in the climate.

In this paper we present a new analysis of Cascade

precipitation—one that seeks to understand variability

not only in total precipitation but also in the strength of

the rain shadow. Our analysis begins in section 3, where

we demonstrate two orthogonal modes of variability

in Cascade wintertime precipitation: one associated

with total precipitation and the other with rain-shadow

strength. We then identify the large-scale circulation

patterns corresponding to each mode, finding that the

rain-shadow pattern strongly resembles the ENSO

teleconnection pattern. In section 4, we repeat the anal-

ysis for streamflow data, confirming that our results apply

generally to the entireWashingtonCascades. In section 5,

we take a detailed look at individual storms exhibiting

strong and weak rain shadows. We find that that a strong

rain shadow is associated with warm-sector precipitation

and a northern Pacific storm track, while a weak rain

shadow is associated with warm-frontal precipitation and

a southern storm track. Finally, we examine the dynam-

ical reasons for these differences in the context of two

case studies.

FIG. 1. Annual precipitation (color contours, m) and elevation

(gray contours, 300-m intervals) over the Cascades. Yellow circles,

numbered sequentially from west to east, mark the locations of

SNOTEL stations included in the analysis. The SNOTEL stations

are 1: Cougar Mountain, 2: Stampede Pass, 3: Sasse Ridge, 4:

Blewett Pass, 5: Grouse Camp, and 6: Trough. Source of pre-

cipitation data is the Parameter-Elevation Regressions on In-

dependent Slopes Model (PRISM) Climate Group, Oregon State

University.
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2. Data

Two datasets are used in our statistical analysis,

and we present results for wintertime, here defined as

December–February (DJF). We have chosen DJF

partially out of convention (e.g., Horel and Wallace

1981; Yarnal and Diaz 1986; Robertson and Ghil 1999)

but also because it represents the period of greatest

snowpack accumulation, making it the most important

period for determining summer streamflows (Serreze

et al. 1999). Though not presented here, results for the

water half-year (October–March) were found to be

similar to the DJF results.

Our precipitation data come from six Snowfall Te-

lemetry (SNOTEL) stations shown in Fig. 1, which

constitute a roughly 100-km east–west transect through

a central portion of the Cascades. Precipitation has been

measured at each station since 1982, providing a con-

tinuous 28-yr time series of DJF precipitation. In this

study we focus exclusively on this transect because of

its relatively simple geometry and high station density.

However, we separately analyzed other SNOTEL

transects to the north and south and found essentially

the same results. The generality of our results is further

supported by river gauge data, as we discuss in section

4. Therefore, we are confident that these six SNOTEL

stations accurately represent precipitation variability

in the Washington Cascades as a whole.

Use of such a sparse dataset requires highly accurate

data, and the seasonal SNOTEL precipitation data used

in our analysis meet this criterion. According to the Nat-

ural Resources Conservation Service (NRCS), which

maintains the SNOTEL network, the DJF precipitation

totals at each site are currently accurate to within 0.5

inches, which is less than 5% of themean at the driest site

in the transect (J. Curtis, NRCS, 2011, personal commu-

nication). This level of accuracy is achieved by using snow

pillow measurements to correct for rain gauge errors

during freezing conditions when the gauges are suscep-

tible to icing. While we cannot confirm that such a high

level of accuracy has been maintained throughout the

study period, we have no reason to suspect the existence

of biases or errors large enough to significantly affect the

results of our analysis.

For the large-scale atmospheric circulation we use

monthly-averaged 500-hPa height fields from the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF)Re-Analysis (ERA)-Interim data, gridded at

0.758 horizontal resolution (Dee et al. 2011). We chose

the 500-hPa level in order to isolate the influence of the

large-scale circulation, absent any topographic influ-

ence. However, the results that we present using 500-hPa

heights are not substantially different than the results

using 850-hPa heights or sea level pressure, particularly

in the Pacific where topography plays no role.

3. Statistical analysis

We begin with a statistical analysis of the 28-yr time

series of wintertime precipitation at the six SNOTEL

stations shown in Fig. 1, which constitute a representa-

tive cross section of the entire Washington Cascades.

Because average precipitation is higher at the western

end of the transect, the raw time series have substantial

differences in both mean and variance. To compensate

for this, we normalize each one by subtracting its mean

and dividing by its standard deviation. None of the time

series showed a significant trend over the 28-yr period.

We have assigned each station a number from one to

six, increasing from west to east, and refer to the nor-

malized time series of wintertime precipitation at the

nth station as Pn.

The Pearson correlation coefficients among the six

SNOTEL stations are presented in Table 1. The corre-

lations are uniformly positive, indicating that a wet (or

dry) winter at one station also tends to be a wet (or dry)

winter at the other stations. However, the correlations

are remarkablyweak between the stations at the opposite

ends of the transect: P1 and P6 are correlated at just 0.38,

which also turns out to be the threshold for statistical

significance at the 95% confidence level. Thus, while it is

clear that there is a statistically significant common sig-

nal, there must also be some substantial independent

controls on windward and leeward precipitation. The

circulation patterns responsible for the linear inde-

pendence between P1 and P6 will be discussed in detail

later in this section.

To more cleanly quantify the precipitation variability

across the transect it is helpful to express the data in

terms of a basis set with fewer dimensions. Techniques

such as principal component analysis (PCA) are often

used for this purpose, but we have chosen a different

approach that we consider to be more intuitive (though

TABLE 1. Correlation coefficients of DJF precipitation among

the six SNOTEL stations shown in Fig. 1. The data span 28 seasons

from 1982 to 2010. Stations are numbered in ascending order from

west to east.

P1 P2 P3 P4 P5 P6

P1 *

P2 0.94 *

P3 0.88 0.91 *

P4 0.84 0.85 0.93 *

P5 0.61 0.64 0.78 0.83 *

P6 0.38 0.43 0.63 0.65 0.89 *
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the end result is essentially the same). To motivate our

approach, we first note that each time series can be well

characterized as a linear combination of P1 and P6:

Pn’Pn
*5anP1 1bnP6 , (1)

where the coefficients an and bn are determined by or-

dinary least squares regression. The effectiveness of this

approximation is demonstrated in Table 2. The first row

of numbers are the correlation coefficients between Pn

and Pn*. All correlations exceed 0.90, which demonstrates

that P1 and P6 alone span almost the whole vector space

of the six time series. The relative weights of P1 and P6 in

each time series are given in the last two rows of the table.

In light of this result, we construct a basis set con-

sisting of two indices: a total precipitation index

T5P11P6 , (2)

and a rain-shadow index

R5P12P6 . (3)

Here T is a measure of the common precipitation

anomaly across the transect; it is highest when it is un-

usually wet everywhere. In contrast, R measures the

strength of the rain-shadow effect: high positive values

indicate a stronger-than-average east–west precipitation

gradient, while negative values indicate a weaker-than-

average precipitation gradient.

A basis set consisting of T and R has the following

useful properties.

(i) Like P1 and P6, T and R nearly span the vector

space of precipitation along the transect. Each time

series is well approximated as a linear combination

of T and R, and T and R explain 100% of the

variance in each approximate time series Pn*.

(ii) Because P1 and P6 have unit variance, T and R

represent orthogonal modes of variability, and the

variances explained by the two indices are inde-

pendent of each other.

(iii) Unlike PCA, in which each principal component

explains a certain fraction of variability over the

entire domain, our basis allows us to evaluate the

relative importance ofT andR at each station along

the transect. Rain-shadow variability is important

wherever R explains a substantial fraction of the

variance in total precipitation.

As a measure of the importance of rain-shadow vari-

ability along the transect, we present the correlation

coefficients betweenR and Pn* in the first row of Table 3.

Where the correlation coefficients switch from positive

to negative (between sites 4 and 5) represents the ful-

crum of the rain-shadow mode: west (east) of this point,

a larger value ofR corresponds to above-average (below

average) precipitation. Near the fulcrum (sites 3, 4, and

5), correlations with R are relatively weak, indicating

that precipitation variability at these locations is well

characterized by T alone.

Squaring these correlation coefficients, we find that R

explains, at most, 31% of the variance in P* along the

transect, while T accounts for the rest (second row of

Table 3). We will return to this result in our watershed

analysis in section 4. But first we explore the patterns of

atmospheric circulation associated with both T and R.

Atmospheric circulation patterns associated
with T and R

How does the large-scale atmospheric circulation

contribute to fluctuations in T and R? We first present

covariance maps of the DJF 500-hPa height anomalies

with the time series of T and R (Figs. 2a,b). For refer-

ence, we also include a map of the mean DJF 500-hPa

heights between 1982 and 2010 (Fig. 2c), which shows

a stationary wave pattern characterized by low-pressure

troughs in the storm track regions of the northwest Pa-

cific and Atlantic basins and a ridge over the west coast

of North America.

The covariance maps (Figs. 2a,b) depict height

anomalies associated with positive values of T and R;

when the indices are negative, the anomaly pattern is

inverted. Because T and R are just the sum and differ-

ence ofP1 andP6, these covariancemaps are the same as

would be created by regressing separately onto P1 and

TABLE 2. Row 1: correlation coefficients between the time series

of DJF precipitation at each SNOTEL station and its least squares

projection onto P1 and P6. High correlations mean that P1 and P6

nearly span the vector space of the six time series. Rows 2 and 3: the

weights of P1 and P6 that make up each time series.

P1 P2 P3 P4 P5 P6

Corr(Pn, Pn*) 1 0.96 0.94 0.91 0.94 1

a 1 0.91 0.75 0.69 0.31 0

b 0 0.08 0.35 0.38 0.76 1

TABLE 3. Row 1: the correlation coefficients between R and the

least squares approximation of normalized DJF precipitation at

each SNOTEL station (Pn*). Row 2: the fraction of variance in Pn*

that is explained by R.

P1* P2* P3* P4* P5* P6*

rR 0.56 0.46 0.22 0.17 20.25 20.56

r 2R 0.31 0.21 0.05 0.03 0.06 0.31
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P6, and then adding and subtracting those maps. Before

discussing the maps in detail, it is important to note that

they depict wintertime averages, and not the conditions

that pertain during any one storm. In section 5 we

present case studies of individual storms, which will

illuminate the dynamical reasons for the statistical

connections observed here.

The first covariance map (Fig. 2a) shows that a high

value of T (i.e., large overall precipitation in the Cas-

cades) is associated with anomalously low geopotential

heights over the Gulf of Alaska and a strengthening of

the climatological ridge over southern California. In

other words, more overall precipitation is associated

with seasons of higher-than-average onshore flow (west-

southwesterly over the Cascades), which is consistent

with a higher flux of moisture into the region. Drier

conditions are associated with the inverse of this pattern:

weakened zonal flow, accompanied by high pressure in

the Gulf of Alaska.

Figure 2a clearly shows that the large-scale circulation

exerts a strong influence on T. To quantify the strength

of this connection, we employ a statistical technique

called ‘‘empirical orthogonal teleconnections 2’’ (EOT2),

first described by van den Dool (2007). EOT2 is

a method for calculating the maximum variance in

a given time series (in this case, T) that can be explained

by an independent variable (in this case, DJF 500-hPa

heights) at a limited number of grid points. Using this

technique, we find that 67% of the variance in T is ex-

plained by 500-hPa heights at just two locations in the

Gulf of Alaska and off the California coast, near the

centers of maximum covariance in Fig. 2. This result is

consistent with previous studies that found SLP to ac-

count for about 70% of the variability in Cascade

snowpack (Stoelinga et al. 2010; Smoliak et al. 2010),

providing further evidence that the large-scale circula-

tion is the dominant control on Cascade wintertime

precipitation.

A similarly strong connection with the atmospheric

circulation is evident in the R covariance map (Fig. 2b).

There is a widespread response in 500-hPa heights over

the northeastern Pacific, northeastern Canada, and the

eastern seaboard of the United States. A strong rain

shadow (high value of R) is associated with ridging well

south of Alaska, meaning a more north-northwesterly

component to the circulation. Conversely, a weak rain

shadow is associated with the inverse of this pattern:

a south-southeasterly wind anomaly that, on top of the

mean pattern (Fig. 2c), results in weaker and more

southerly flow into the Cascades. Applying the EOT2

technique to R as we did to T, we find that 72% of the

variance in R is explained by 500-hPa heights—in this

case at three grid points in the Pacific, Hudson Bay, and

the Caribbean—proving that the strength of the win-

tertime rain shadow is also predominantly controlled by

fluctuations in the large-scale circulation.

Since T and R are, by construction, orthogonal, we do

not expect their associated circulation patterns to be

FIG. 2. (a) Covariance between DJF 500-hPa heights and the

total precipitation index T, which is the sum of P1 and P6. Solid

(dashed) contours represent positive (negative) covariance, spaced

at 10 m. The bold contour represents zero covariance. A reference

dot at 458N, 1508W is shown to allow easier comparison with other

figures. Washington State is shaded in black. (b) As in (a) but for

the rain-shadow index R, which is the difference between P1 and

P6. (c) The mean DJF 500-hPa height field from 1982 to 2010.
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related to each other, and no striking connection is ev-

ident in Figs. 2a and 2b. Although the pattern in Fig. 2a

does not appear to resemble any common mode of

North Pacific variability that we are aware of, Fig. 2b is

strikingly similar to the Tropical–Northern Hemisphere

(TNH) pattern—a teleconnection pattern closely asso-

ciated with ENSO (Mo and Livezey 1986; DeWeaver

and Nigam 2002), shown in Fig. 3.

The connection between ENSO and the rain shadow

is further supported by the correlations between R, the

Niño-3 index, and the TNH index (Table 4). The cor-

relations are both statistically significant and are at least

0.5 in magnitude. In contrast, T is not significantly re-

lated to either ENSO or the TNH.

It should be noted that this result is consistent with

previous research on Cascade precipitation. In particu-

lar, Leung et al. (2003) also found that correlations be-

tween ENSO and wintertime precipitation differ east

and west of the Cascades, implying that ENSO must in-

fluence rain-shadow variability. However, our results do

refute the widespread perception in the literature (e.g.,

Dettinger et al. 1998; Wright and Agee 2004; Ryu et al.

2009) and in the media that El Niño (La Niña) tends to

bring drier (wetter) conditions to the entire Cascades.

While this rule of thumb holds true from the crest west-

ward, we find a negligible-to-opposite relationship be-

tween precipitation and ENSO on the eastern slopes.

At least two factors help explain why this mis-

perception exists. Firstly, thewestern slopes have a higher

density of weather stations than the eastern slopes,

imparting a west-slope bias to any composite dataset

of Cascade-average precipitation. Secondly, previous

studies have mostly dealt with snowpack rather than

precipitation per se. Because the southeasterly wind

anomalies associated with El Niño (Fig. 3b) also tend to

bring warmer temperatures, snowpack could decrease

during El Niño despite higher precipitation on the

eastern slopes, giving the false impression that El Niño

brings drier conditions to all of the Cascades.

The connection between ENSO and the wintertime

Cascade rain shadow may have implications for long-

range forecasting. Because ENSO has strong persis-

tence from autumn to winter, the November Niño-3

index is significantly predictive of wintertime rain-shadow

strength, with a correlation coefficient of 20.56. In con-

trast, T, which is not related to a teleconnection pattern,

has negligible persistence and is therefore impossible to

forecast on monthly time scales. In other words, rain-

shadow strength is more predictable than overall pre-

cipitation in the Cascades. As a result, the degree of

predictability in wintertime precipitation is highly de-

pendent on location relative to the crest. Predictability is

highest for western slopes and far-eastern slopes where

variability inR accounts for a significant fraction of total

variability. Predictability is much lower near the fulcrum

of rain-shadow variability, where T explains nearly all of

the variance in wintertime precipitation (see Table 4).

We discuss the implications of this for water resource

management in the following section.

4. Watershed impacts

For water resources, the precipitation rates analyzed

in the previous section are perhaps less important than

streamflow. In contrast to the SNOTEL stations, which

reflect only a single point in space, rivers integrate

FIG. 3. (a) Covariance between DJF 500-hPa heights and the

tropical–Northern Hemisphere (TNH) index. (b) Covariance be-

tween DJF 500-hPa heights and the Niño-3 index.

TABLE 4. Correlation coefficients between theDJF average ofT,

R, the Niño-3 index, and the TNH index, from 1982 to 2010. HereR

is significantly correlatedwith the TNHandNiño-3 indices, whileT

is not significantly correlated with either.

T R Niño-3

Niño-3 0.03 20.50 *

TNH 20.20 0.63 20.66
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precipitation over a broad catchment area and weight

wetter locations more heavily than dry locations. Here

we repeat the preceding analysis using data from

streamflow gauges from the region’s rivers. This has

a twofold purpose. Firstly, it provides an additional

check on the robustness of the results from the local

SNOTEL measurements and, secondly, it allows us to

evaluate the impact of rain-shadow variability on water

resources.

We use data from U.S. Geological Survey (USGS)

river gauges in the seven watersheds shown in Fig. 4. The

dashed lines mark the extent of each gauge’s catchment

area, that is, the extent of the watershed lying upstream

of the gauge. As an approximation of DJF precipitation

in each basin, we use cumulative streamflow between

December and the following August. In doing so, we

obviously include precipitation falling outside DJF, thus

diminishing the strength of any relationship with the

DJF atmospheric circulation. However, a shorter interval

would miss the substantial component of wintertime

precipitation that falls as snow and is released from the

landscape only during themelt season. To allow for direct

comparison with the SNOTEL results, we limit our

analysis to the same 28-yr period of the SNOTEL record.

The river gauges included in our analysis are not part

of the Hydro-Climatic Data Network (HCDN), as the

HCDN did not provide the spatial or temporal coverage

necessary to allow direct comparison with the SNOTEL

results. As a result, the data are susceptible to bias from

possible changes in land use, river infrastructure, or ir-

rigation practices. However, we are not aware of any

such changes occurring upstream of our gauges over the

28-yr period of our study, nor are there any significant

trends in the data to suggest otherwise. Moreover, while

dams exist on the Skagit, Green, and Yakima Rivers,

variability in the late-summer volume of the reservoirs

behind these dams is a small fraction of each river’s total

annual streamflow. We are therefore confident that

these river gauges provide an accurate representation of

precipitation variability in the Cascades.

In place of P1 and P6 in the SNOTEL analysis, we use

streamflow from western and eastern rivers. We divide

the rivers into three transects according to latitude. The

northern transect consists of the Skagit River on the

west and the Methow River on the east. The central

transect consists of the Skykomish River on the west and

the Wenatchee River on the east. The southern transect

consists of the Snohomish and Green Rivers on the west

and the Yakima River on the east. For each of these

transects, we calculate a total precipitation index (T)

and a rain-shadow index (R) as before, normalizing the

western and eastern time series and then taking their

sum and difference.

The correlations between the western and eastern

time series of the northern, central, and southern tran-

sects are 0.76, 0.86, and 0.78, respectively. These values

are much higher than the correlation between P1 and P6

in the previous analysis (0.38), which is not surprising

considering that much of the precipitation in eastern

watersheds falls near the crest (Fig. 1), where it corre-

lates strongly with western slopes (Table 1). Given these

high correlations, R is bound to account for a smaller

fraction of the variance in streamflow than the 31% it

contributes at SNOTEL sites 1 and 6 in section 3. In-

deed, R explains just 12%, 7%, and 11% of streamflow

variance from north to south.

Despite its diminished contribution, however, the

circulation patterns associated with R are remarkably

consistent among the three watershed transects (Fig. 5),

and their structure is very similar to that of the analo-

gous rain-shadow pattern from section 3 (Fig. 2b). The

statistical significance of these patterns can be verified

with EOT2 analysis, which shows that DJF 500-hPa

FIG. 4. A map of the watersheds considered in the analysis, with

elevation represented by gray shading. Dashed lines mark the

boundaries of the catchment areas upstream of the river gauges,

denoted by black dots. The rivers are 1: Skagit, 2: Skykomish, 3:

Snohomish, 4: Green, 5: Methow, 6: Wenatchee, and 7: Yakima.

The USGS identification numbers of the river gauges are (1)

12194000, (2) 12134500, (3) 12144500, (4) 12106700, (5) 12449950,

(6) 12462500, and (7) 12500450. The northern transect consists of

rivers 1 and 5. The central transect consists of rivers 2 and 6. The

southern transect consists of rivers 3, 4, and 7. The crest, which

marks the boundary between western and eastern watersheds, is

represented by a solid black line. Elevation is contoured in gray at

intervals of 300 m as in Fig. 1.
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heights at just two grid points in the Gulf of Alaska and

off the California coast explain at least 52% of the var-

iability inR at each transect, despite the additional noise

that results from March–August precipitation being in-

cluded in the streamflow data. Moreover, at each tran-

sect R is significantly correlated with the DJF Niño-3

index, with correlation coefficients of 20.54, 20.47,

and 20.47 from north to south. This confirms that a

common circulation pattern, closely associated with the

ENSO teleconnection, is primarily responsible for var-

iability in rain-shadow strength across the Washington

Cascades.

The circulation patterns associated with T at each

transect exhibit somewhat more variation while still

maintaining much of the structure of Fig. 2a from the

SNOTEL analysis. The T circulation pattern of the

northern transect (Fig. 6a) looks almost identical to Fig. 2a,

with the same centers of action over the Gulf of Alaska,

Nova Scotia, and the eastern Pacific near California.

Similarly, the circulation patterns of the central and

southern transects (Figs. 6b,c) also have three centers of

action, though shifted somewhat from those in Fig. 2a.

Despite these broad similarities, however, one fea-

ture of the circulations in Figs. 6b and 6c stands out:

their wind anomalies are northwesterly rather than

southwesterly over the Cascades. There are two likely

explanations for this difference. The first relates to

topographic differences upstream of the western wa-

tersheds. Because of the rain-shadowing effects of

Mt. Rainier and the Olympic Mountains, southwestern

watersheds like the Green (number 4 in Fig. 4) tend to

receive maximum precipitation during zonal flow, while

northwestern watersheds like the Skagit (1) tend to re-

ceive maximum precipitation during west-southwesterly

flow (Neiman et al. 2011). While this difference is

modest, it likely contributes to the differences in T pat-

terns observed in Fig. 6.

The second reason for the differences in T patterns

among the three transects relates to the geometries of

the eastern watersheds. While the Wenatchee (6) and

Yakima (7) basins share long borders with the crest,

the Methow (5) lies mostly east of the crest. Conse-

quently, the Wenatchee and Yakima draw more of

their water from near the crest where precipitation is

more strongly correlated with western slopes. As a re-

sult, their T patterns are weighted more heavily toward

a western precipitation signal, contributing to the ob-

served northwesterly flow anomalies in Figs. 6b and 6c.

The watershed data are fully consistent with the re-

sults presented from the single SNOTEL transect in

section 3. The rain-shadow pattern is very robust, with

little variation from one transect to another. The pattern

associated with total precipitation exhibits some vari-

ability among the transects, but these differences are

easily understood in light of the different watershed

geometries. Such consistency suggests that the SNOTEL

transect analyzed in section 3 is, in fact, representative

of the Washington Cascades more generally, and that

wintertime precipitation in the Cascades is well char-

acterized by just two modes of variability: a total pre-

cipitation mode T and a rain-shadow mode R.

FIG. 5. As in Fig. 2b but substituting December–August

streamflows in western and eastern watersheds for P1 and P6, re-

spectively, for the (a) northern, (b) central, and (c) southern

transects.
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A full assessment of the impact of rain-shadow vari-

ability on water resources would require a further and

extensive analysis of temperature, snowpack, and other

variables that influence the hydrological cycle. Never-

theless, two aspects of the preceding analysis are rele-

vant to water resources and should be emphasized.

Firstly, differences in streamflow variability east and

west of the crest, while relatively small, are caused

primarily by circulation patterns associated with ENSO

variability. Secondly, we showed in the previous section

that rain-shadow variability (and thus ENSO) is least

important just east of the crest near the fulcrum of

the rain-shadow mode. This implies a weak connection

between ENSO and eastern streamflows, as confirmed

by the low correlations between the Niño-3 index and

annual streamflows in the Methow, Wenatchee, and

Yakima Rivers (jrj # 0.18). As a result, annual stream-

flows east of the crest are inherently less predictable

than annual streamflows west of the crest, where ENSO

influence on precipitation is unambiguous.

5. Dynamics

In the preceding analysis, we demonstrated that

ENSO via its TNH-like teleconnection pattern plays an

important role in controlling the strength of the win-

tertime Cascade rain shadow. We now examine this

connection more closely, focusing on how variability in

the large-scale circulation translates into variability in

the dynamics of individual storms.

Our dataset consists of six years of archived forecast

output between 2005 and 2010. Two different weather

prediction models were used: the fifth-generation Penn-

sylvania State University–National Center for Atmo-

spheric Research Mesoscale Model (MM5) and the

Weather Research and Forecasting model (WRF). The

MM5 model was run twice daily by the Northwest

Regional Modeling Consortium at the University of

Washington from 1997 until it was replaced by theWRF

model on 15 April 2008. Both models were run at 4-km

horizontal resolution and initialized with output from

the National Centers for Environmental Prediction

Global Forecast System (GFS) model. Several changes

were made to the models between 2005 and 2010, most

notably to the microphysics parameterization scheme in

May 2006. All model changes are documented at http://

www.atmos.washington.edu/mm5rt/log.html.

Within the six years of model output, we have chosen

to focus exclusively on the 100 strongest storms, defined

as the 100 24-h periods during when the most pre-

cipitation fell in the Washington Cascades (defined, for

our purposes, as the region within the box in Fig. 7a).

These storms were identified as follows. First, using

gridded precipitation output at 6-h intervals (corre-

sponding to 0000, 0600, 1200, and 1800 UTC), we calcu-

lated the 24-h running mean of cumulative precipitation

in theWashington Cascades. Storms were then identified

as the 100 largest relative maxima in the running-mean

time series. If multiple relative maxima occurred within

a 48-h period, only the largest was included in our dataset.

Together, these 100 storms account for 32% of the total

FIG. 6. As in Fig. 2a but substituting December–August

streamflows in western and eastern watersheds for P1 and P6, re-

spectively, for the (a) northern, (b) central, and (c) southern

transects.
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precipitation in the Cascade region between 2005 and

2010.

As a measure of rain-shadow strength for each storm,

we have calculated a rain-shadow index R—just as we

did previously—by normalizing the time series of west-

ern and eastern precipitation over the 100-storm dataset

and taking their difference (see Fig. 7a for the western

and eastern domains). By this metric high values of R

indicate strong rain shadows, while low values of R in-

dicate weak rain shadows. To facilitate comparison be-

tween storms with strong and weak rain shadows, we

divided our dataset into three categories. The 33 storms

with the highest R values were defined as strong-rain-

shadow (SRS) storms, while the 33 storms with the

lowestR values were defined as weak-rain-shadow (WRS)

storms. The remaining 34 storms in our dataset are con-

sidered neutral-rain-shadow (NRS) storms.

a. Influence of storm-track latitude

How does ENSO influence rain-shadow strength in

the Washington Cascades? It is well established that the

overall storm track is shifted southward in El Niño

winters relative to La Niña winters (e.g., Horel and

Wallace 1981; van Loon and Rogers 1981; Seager et al.

FIG. 7. (a) The difference in average precipitation (cm) between the 33 strongest-rain-shadow storms and the 33

weakest-rain-shadow storms out of the 100 wettest storms in the Washington Cascades from 2005 to 2010. Positive

(negative) values indicate more precipitation during strong-rain-shadow (weak-rain-shadow) storms. The black box

represents the region within the model over which precipitation was summed to calculate total storm precipitation.

The green line represents the crest of the Washington Cascades. (b) The number of storms with weak (red), strong

(blue), and neutral (white) rain shadows by season.Weak-rain-shadow (strong-rain-shadow) storms are the 33 storms

with the lowest (highest) rain-shadow index values among the 100 wettest storms from 2005 to 2010. The seasons are

defined as follows: autumn (SON), winter (DJF), spring (MAM), and summer (JJA). (c) The distribution of 850-hPa

wind direction during storms with weak (red), strong (blue), and neutral (white) rain shadows. The distribution

represents the model output at the grid point marked by the yellow dot in (a), at the beginning of the wettest 12-h

period of each storm. The radius of each pie wedge is proportional to the number of storms with winds coming from

the direction of the wedge. The lines abutting the edge of the circle indicate the mean wind direction of SRS storms

(blue) and WRS storms (red). (d) As in (c) but for 500-hPa winds.
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2010; Lareau andHorel 2012). Several lines of evidence,

presented in Fig. 7, suggest that it is indeed this shift that

explains the changes in rain-shadow strength.

Firstly, Fig. 7a shows the difference in average pre-

cipitation between SRS and WRS storms over the en-

tire model domain. As expected, a see-saw pattern is

evident in theWashington Cascades, meaning that SRS

storms bring more precipitation to western slopes, and

less precipitation to eastern slopes, than WRS storms.

However, significant differences are also observed in

southwesternOregon, which receives nearly 5 cmmore

precipitation during WRS storms than during SRS

storms. In other words, storms that exhibit weak rain

shadows in theWashington Cascades also tend to bring

more precipitation south of Washington. This implies

a more southern path for the intense precipitation.

Secondly, seasonal variations are also supportive of

the same connection (Fig. 7b). In autumn nearly half

(47%) of all storms are SRS storms, while 31% areWRS

storms. In winter, on the other hand, WRS storms are

more common, accounting for 37% of the total com-

pared to just 22% that are SRS storms. The prepon-

derance of SRS storms in autumn and WRS storms in

winter is consistent with the southward migration of the

Pacific storm track from autumn to winter (Chang et al.

2002; Lareau and Horel 2012).

Finally, differences in storm-track latitude are also

implicated by the differences in wind direction between

storm types (Figs. 7c,d). WRS storms on average exhibit

more southerly winds at 850 hPa and stronger veering

between 850 and 500 hPa. The veering in particular

suggests that warm-air advectionmay be stronger during

WRS storms than during SRS storms. Using the equa-

tion for thermal wind [e.g., Holton 2004, Eq. (3.31)], we

confirm that WRS storms on average exhibit twice as

much warm-air advection as SRS storms (u � $T 5 0.62

versus 0.31 K h21). This suggests that WRS storms are

more common during warm-frontal passage while SRS

storms are more common when temperature advection

is weaker, as is typical in a storm’s warm sector. Because

warm fronts lie to the north of the warm sector in a

midlatitude cyclone, warm-sector precipitation in the

Washington Cascades should be more likely with a

northern storm track, while warm-frontal precipitation

should be more likely with a southern storm track.

To confirm the connection between the type of pre-

cipitation (i.e., warm frontal versus warm sector) and

rain-shadow strength, we examined the synoptic fea-

tures of the 10 strongest SRS storms and the 10 weakest

WRS storms, using a combination of ECMWF re-

analysis data and surface analyses from the National

Weather Service (NWS). As expected, we found that

precipitation in the Washington Cascades occurred

primarily in the warm sector of all 10 SRS storms, while

not a single WRS storm involved significant warm-

sector precipitation. Of the 10 WRS storms, 7 brought

the heaviest precipitation ahead of either a warm or

partially occluded front accompanied by significant

warm-air advection. The remaining three followed the

southernmost paths of all, making landfall near the

mouth of the Columbia River and generating south-

easterly winds in the Washington Cascades, effectively

reversing the climatological rain shadow.

How might warm fronts act to weaken the rain-

shadow effect? An analysis of the mesoscale structure of

WRS storms suggests that they often exhibit weak and/

or shallow mountain waves, with correspondingly weak

vertical velocities that dampen both windward con-

densation and leeward evaporation. There are at least

three ways that warm fronts can have this effect. Firstly,

veering during warm-frontal passage can create a di-

rectional critical level, causing mountain wave ampli-

tude to decay with height (e.g., Shutts 1995, 1998; Doyle

and Jiang 2006). Secondly, a warm front is often asso-

ciated with high static stability at low levels, which

can lead to orographic blocking and lower-amplitude

mountain waves (Smith et al. 2002). Finally, a decline in

static stability with height, which typically occurs above

a warm-frontal zone, reduces the index of refraction for

mountain waves (also known as the ‘‘Scorer parame-

ter’’), which in turn can cause the waves to be trapped,

limiting their vertical extent (Scorer 1949; Sawyer 1960).

In the following case studies, we present empirical ev-

idence that these three mechanisms do, in fact, con-

tribute to weakening the Cascade rain shadow during

warm-frontal passages.

b. Case studies

Here we focus on two storms that clearly illustrate the

mechanisms by which warm-sector (warm frontal) pre-

cipitation favors a strong (weak) rain shadow. The first

storm, which had the seventh-strongest rain shadow of

all storms in the dataset, took place 3–4 December 2007,

with maximum precipitation in the Washington Cas-

cades occurring from 1200 to 1800 UTC on 3 December.

The second storm, which had the fourth-weakest

rain shadow of all storms in the dataset, took place

31 January–1 February 2006, with maximum precip-

itation in theWashington Cascades occurring from 0300

to 0900 UTC on 1 February. We chose to compare these

storms because they have the same wind direction near

crest level along a southwest-to-northeast transect

through the central Cascades and, therefore, provide the

cleanest possible comparison between warm-frontal and

warm-sector precipitation. We restrict our analysis to

the 6-h period of maximum precipitation in each storm.
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Average precipitation rates during each 6-h window are

shown in Fig. 8. Note that the widespread pattern of

precipitation in the WSR case cannot be produced by

a simple enhancement in precipitation spilling over the

crest of the Cascades.

Figure 9 shows SLP and 1000–850-hPa thickness at the

beginning of each storm’s 6-h window. The thickness

field is proportional to lower tropospheric temperature,

so strong gradients delimit fronts, which we have drawn

with additional guidance from NWS surface analyses.

Consistent with the inferences made previously, the

Cascades lay within the warm sector of the SRS case,

while precipitation in the WRS case occurred when

there was an approaching warm front.

To assess the extent to which synoptic-scale ascent

contributes to the differences in rain-shadow strength be-

tween the two storms, we compare each storm’s 500-hPa

vertical velocity in Fig. 10. Data plotted are for hour 3 of

FIG. 8. Average hourly precipitation in cm during the 6 h of

maximum precipitation for (top) the strong-rain-shadow and (bot-

tom) the weak-rain-shadow case. The periods are SRS case: 1200–

1800 UTC on 3 Dec 2007 and WRS case: 0300–0900 UTC on 1 Feb

2006. A black line marks the crest. Source is the MM5 model, 4-km

resolution.

FIG. 9. Sea level pressure (solid contours, hPa) and 1000–850-hPa

thickness (dotted contours, m) at the beginning of the 6-h period of

maximum precipitation for (top) the SRS and (bottom) the WRS

case. Strong gradients in the thickness field indicate the presence of

fronts. In the SRS case, the Cascades lie within the warm sector

where little warm-air advection occurs, while significant warm-air

advection accompanies the warm front in the WRS case. Source is

the ERA-Interim dataset.
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each storm’s 6-h window, and all wavelengths less than

240 km have been filtered out. The SRS case clearly

exhibits stronger ascent overall,consistent with its larger

precipitation totals (Fig. 8). However, the patterns of

ascent are precisely the opposite of what one might ex-

pect from the precipitation distributions in Fig. 8: in the

SRS case, ascent is more or less evenly distributed across

the Cascades, while in the WRS case, ascent is concen-

trated over Puget Sound and the western slopes of the

Cascades. These patterns of synoptic-scale ascent can-

not account for the observed differences in rain-shadow

strength, suggesting that differences are generated by

smaller-scale dynamical processes.

Figures 11 and 12 show various mesoscale details of

the two storms at hour 1 (top), 3 (middle), and 5 (bottom)

of each storm’s 6-h window of maximum precipitation.

In the left column, barbs represent the average winds at

900 hPa (black), 800 hPa (red), and 500 hPa (blue),

while green/yellow shading indicates where the 700-hPa

vertical wind exceeds 0.5 m s21 in magnitude. The cen-

ter column shows a vertical cross section of liquid and

ice water content (LIWC) and vertical winds along the

200-km transect between points A and B in the left

column. The black dot represents the center of the tran-

sect, where at 775 hPa the winds of both storms are ori-

ented parallel to the transect. Finally, the right column

represents the vertical profile of static stability just

upwind of the transect, calculated using the Durran and

Klemp (1982) approximation for the moist Brunt–Väisälä

frequency N.

Beginning with the SRS case (Fig. 11), little change is

observed between hour 1 and 5, which is not surprising

given the absence of significant temperature advection.

Weak vertical gradients in wind and static stability allow

vigorous mountain waves to penetrate the entire tro-

pospheric column. In the vertical cross section (center

column), there is a clear relationship between the moun-

tain wave pattern and LIWC, with upward (downward)

vertical motion corresponding to an increase (decrease)

inLIWCalong the transect. Aparticularly sharp decrease

in LIWC is evident at the Cascade crest near the center of

the transect where downward vertical velocities as high as

3 m s21 are observed. This results in a sharp precipitation

gradient betweenwindward and leeward slopes and, thus,

a strong rain shadow.

In contrast to the SRS case, the WRS case is a good

example of how a warm-frontal passage can weaken the

rain-shadow effect (Fig. 12). Early in the storm strong

veering between 800 and 500 hPa imposes a directional

critical level near 500 hPa, capping the extent of

mountain wave penetration. High static stability (N

;0.015 s21) below 800 hPa suggests that the flow may

also be blocked, resulting in low-level southerly flow

west of the Cascades that further dampens mountain

wave activity. At hours 1 and 3 static stability dramatically

decreases above the frontal zone (;850 hPa), resulting

in a sharp reduction in the Scorer parameter that likely

helps to confine the waves near the surface. At hour 5,

after the front has passed and veering is diminished, wave

dampening persists because of vertical wind shear, which

maintains a strong vertical gradient in the Scorer pa-

rameter.With weak vertical winds theWRS case exhibits

only a modest decline in LIWC downstream of the crest,

resulting in a relatively uniform distribution of precip-

itation between leeward and windward slopes, despite

weak synoptic-scale ascent in the lee (Fig. 10).

FIG. 10. Synoptic-scale 500-hPa vertical velocity (m s21) at hour

3 of the 6-h period of maximum precipitation for (top) the SRS and

(bottom) the WRS case. The data were filtered to remove wave-

lengths less than 240 km.
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FIG. 11. Wind, moisture, and static stability at hour (top) 1, (middle) 3, and (bottom) 5 of the SRS case. (left) Wind barbs show

horizontal winds at 900 hPa (black), 800 hPa (red), and 500 hPa (blue). Green (yellow) shading indicates where upward (downward)

vertical winds exceed 0.5 m s21 at 700 hPa. A 200-km transect is shown in black between points A and B, with a dot marking the center

point. At 775 hPa, over the center point the average wind direction of both storms is parallel to the transect. (center) Vertical cross

sections of liquid/ice water and vertical winds along the 200-km transect between points A and B in the left. Colored contours depict the

liquid plus ice mixing ratio (g kg21). Solid (dashed) contours represent upward (downward) vertical winds at intervals of 0.5 m s21.

(right) Moist Brunt–Väisälä frequency averaged over a 9000 km2 area just upstream of the transect. Source is the MM5 model, 4-km

resolution.
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From these two cases, it seems clear that much of

the variability in Cascade rain-shadow strength can be

attributed to differences in mountain wave activity

between warm-sector and warm-frontal storms. In warm-

sector storms weak temperature advection presents

ideal conditions for deep mountain waves to form,

resulting in large precipitation gradients between

windward and leeward slopes. In warm-frontal storms

warm-air advection causes strong vertical gradients

in both wind and static stability, leading to weaker

FIG. 12. As in Fig. 11 but for the WRS case.
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mountain waves and a more uniform precipitation

distribution.

6. Discussion

In this paper, we have shown that interannual vari-

ability in wintertime Cascade precipitation can be

characterized by two orthogonal indices: a total pre-

cipitation index (T) representing regionwide precipi-

tation and a rain-shadow index (R) representing the

strength of the east–west precipitation gradient.WhileT

explains the majority of the variance in interannual

wintertime precipitation, R explains up to 31% of the

variance on western and far-eastern slopes.

Variability in the large-scale circulation explains

about 70% of the variability in both T and R. The cir-

culation pattern associated with T has no known forcing:

it appears to result from stochastic weather processes

that have negligible persistence on seasonal time scales.

In contrast, R is strongly influenced by a teleconnection

pattern associated with ENSO and, therefore, exhibits

significant predictability from autumn to winter. For

streamflows this means that predictability is only sig-

nificant for western watersheds where the influence of

R (and thus ENSO) is unambiguous.

Several lines of evidence suggest that ENSO in-

fluences rain-shadow strength by controlling the latitude

of the Pacific storm track. A northern storm track as-

sociated with La Niña brings more warm-sector pre-

cipitation to the Washington Cascades, creating ideal

conditions for deep mountain waves that enhance the

rain-shadow effect. During El Niño a southern storm

track brings more warm fronts through the Cascades,

which are often accompanied by weak mountain waves

and a weak rain shadow. Three mechanisms likely con-

tribute to suppressing mountain wave activity during

warm-frontal passage: enhanced veering due to warm-

air advection, enhanced blocking due to low-level sta-

bility, and a sharp decline in the Scorer parameter above

the frontal zone, where static stability is significantly

reduced. While all of these mechanisms appear to have

been at work in the weak-rain-shadow storm of 31 Jan-

uary 2006, as well as the others that we examined, the

relative importance of each mechanism to rain-shadow

variability in the Cascades—or elsewhere—has yet to be

determined conclusively.

Our results demonstrate the importance of under-

standing the detailed synoptic and mesoscale dynamics

involved in rain-shadow variability. Time-averaged fields

provide little indication of the synoptic conditions under

which precipitation occurs. There is a danger that in-

terpretations based on the wintertime-mean circulation

may not give the full picture (e.g., Leung et al. 2003).

How generally might the results of this study apply to

other midlatitude ranges with strong rain shadows? The

connection between ENSO and rain-shadow strength is

probably specific to the Cascades where fluctuations in

storm-track latitude can have a significant impact on

the ratio of warm-sector to warm-frontal precipitation.

The Cascades are also lower in elevation than other

rain-shadowed ranges such as the Andes, the Southern

Alps, and the Sierra Nevada, which may further limit

the generality of our results. Indeed, in both the Southern

Alps and Sierra Nevada, heavy leeside precipitation has

been linked, not to warm-frontal passages, but to strong

cross-barrier flow advecting moisture to the lee (Sinclair

et al. 1997; Underwood et al. 2009). Nevertheless, there is

reason to believe that at least some of the mechanisms

identified in this study may influence rain-shadow

strength elsewhere. Blocking, static stability, and ver-

tical wind shear have all been shown to modify pre-

cipitation patterns on the windward slopes of various

mountain ranges (e.g., Colle 2004; Dettinger et al. 2004;

Rotunno and Houze 2007), and it would not be sur-

prising to find that their influence extends to the lee

side as well. In the absence of detailed studies of other

mountain ranges, however, there is currently insuf-

ficient evidence to conclude that the controls on rain-

shadow variability in the Cascades must also apply to

other mountain ranges.

Our results may have important implications for the

impacts of climate change on Cascade precipitation.

Several models predict an El Niño–like change in the

mean-state circulation of the North Pacific due to a

weakening of the Walker circulation and a reduction in

the east–west gradient in tropical Pacific sea surface

temperatures (e.g., Meehl et al. 2006; Stevenson et al.

2012). If these models are correct, we might expect the

eastern slopes of the Cascades to receive more winter-

time precipitation in response to climate change and the

western slopes to receive less precipitation. Indeed,

Salathé et al. (2010) found precisely this result in re-

gional simulations forced by two different global climate

models. However, significant variance remains among

model projections of the mean-state circulation and the

ENSO teleconnection in a warmer world (Collins et al.

2010). Unless models improve, all we can say with con-

fidence is that any change in the large-scale circulation

may well have a very different impact on precipitation

east and west of the Cascade crest. At a more general

level, understanding controls on the strength of the rain

shadow is representative of a broader challenge in cli-

mate science: in regions of extreme gradients small

changes in the overall circulation can give rise to a large

local response. If the impacts of climate change in such

regions are to be forecasted accurately, a combination of
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improved dynamical understanding and narrower con-

straints from model projections is required.
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