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ABSTRACT

The efficacy of a novel ensemble data assimilation (DA) technique is examined in the climate field re-

construction (CFR) of surface temperature. A minimalistic, computationally inexpensive DA technique is

employed that requires only a static ensemble of climatologically plausible states. Pseudoproxy experiments

are performed with both general circulation model (GCM) and Twentieth Century Reanalysis (20CR) data

by reconstructing surface temperature fields from a sparse network of noisy pseudoproxies. TheDAapproach

is compared to a conventional CFR approach based on principal component analysis (PCA) for experiments

on global domains. DA outperforms PCA in reconstructing global-mean temperature in all experiments and

is more consistent across experiments, with a range of time series correlations of 0.69–0.94 compared to 0.19–

0.87 for the PCAmethod. DA improvements are even more evident in spatial reconstruction skill, especially

in sparsely sampled pseudoproxy regions and for 20CR experiments. It is hypothesized that DA improves

spatial reconstructions because it relies on coherent, spatially local temperature patterns, which remain robust

even when glacial states are used to reconstruct nonglacial states and vice versa. These local relationships, as

utilized by DA, appear to be more robust than the orthogonal patterns of variability utilized by PCA.

Comparing results for GCM and 20CR data indicates that pseudoproxy experiments that rely solely on GCM

data may give a false impression of reconstruction skill.

1. Introduction

Climate reconstructions seek to extract useful infor-

mation from noisy and sparse paleoclimate proxy data.

These reconstructions usually take one of two forms:

broad indices, such as global-mean surface temperature,

and climate fields, such as spatial maps of surface tem-

perature. While index reconstructions may yield large-

scale information, climate field reconstructions (CFRs)

offer important spatial details and regional information.

Additionally, it is possible to compute global or hemi-

spheric means from the reconstructed fields, though

these can sometimes suffer a loss of variance [see dis-

cussion in Mann et al. (2012)].

The best way to perform CFRs remains an open ques-

tion, with no universally superior approach (Smerdon et al.

2011). One important way to examine CFR techniques is

through pseudoproxy experiments (PPEs), which provide

a synthetic, controlled test bed [see Smerdon (2012) for

a review]. Based on PPEs, large-scale indices have been

shown to be skillfully recovered using most of the well-

known CFR techniques (Smerdon et al. 2011; Jones et al.

2009), while skill in reconstructing the climate fields

themselves has been muchmore variable (Smerdon et al.

2011).
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In addressing the climate reconstruction problem,

data assimilation (DA) has emerged as a potentially

very useful CFR technique. DA provides a flexible

framework for combining information from paleo-

climate proxies with the dynamical constraints of a cli-

mate model. The majority of DA approaches utilized

thus far can be roughly assigned to four categories:

pattern nudging (von Storch et al. 2000), ensemble filters

(Dirren and Hakim 2005; Huntley and Hakim 2010;

Pendergrass et al. 2012; Bhend et al. 2012), forcing sin-

gular vectors (van der Schrier and Barkmeijer 2005),

and the selection of ensemble members best matching

proxy data (Goosse et al. 2006, 2010; Franke et al. 2011;

Annan and Hargreaves 2012). Forcing singular vectors

and the selection of ensemble members have been ap-

plied to real proxy data using earth system models of

intermediate complexity, while pattern nudging has

been used to prescribe atmospheric circulation anoma-

lies that then give temperature anomalies consistent

with proxy data (Widmann et al. 2010); each of these

approaches give results that are consistent with spatially

dense empirical knowledge over Europe (Widmann

et al. 2010).

Ensemble DA provides a particularly compelling ap-

proach to paleoclimate reconstruction because it allows

for spatially and temporally changing statistics that may

use proxy data more effectively. However, exploiting

temporally changing statistics requires forecast models

with predictability limits longer than the time scale of

the proxy data. Branstator et al. (2012) demonstrate that

up-to-decadal persistence exists in the North Atlantic in

several GCMs, yet the location of persistence varies

widely by model; how ocean persistence translates into

atmospheric predictability is also an open question.

Moreover, simulating ensembles using climate models

over hundreds, if not thousands, of years presents a tre-

mendous computational cost. These realities motivate

an ‘‘offline’’ approach to DA, where background en-

sembles are constructed from existing climate model

simulations (e.g., Huntley andHakim 2010), without the

need to cycle analyses forward in time with a climate

model. Traditional ‘‘online’’ DA approaches, such as

those used in operational weather forecasting, become

feasible for climate reconstruction only when it has been

demonstrated that forecast predictability issues have

been overcome and when the reconstruction skill signif-

icantly improves upon a vastly cheaper offline equivalent.

Offline approaches have been advanced by Bhend

et al. (2012) and Annan and Hargreaves (2012). Bhend

et al. (2012) applied the time-average assimilation

method of Dirren and Hakim (2005) and Huntley and

Hakim (2010), based on an ensemble square root filter,

while Annan and Hargreaves (2012) applied a degenerate

particle filter approach, similar to Goosse et al. (2006,

2010). Both methods reconstruct a ‘‘true’’ model simu-

lation selected out of their ensemble of model simula-

tions, all ofwhichwere given identical forcings; additionally,

the Bhend et al. (2012) simulations were given identical

boundary conditions. Both methods show positive re-

construction skill, particularly for near-surface temper-

ature over land in theNorthernHemisphere. Annan and

Hargreaves (2012) note, however, that their ensemble

tended to ‘‘collapse’’ (a dramatic loss of ensemble var-

iance) even for a very large ensemble size, a known

limitation of the particle filter approach (Snyder et al.

2008). They also discuss that they obtain from little to no

forecast skill by using the analysis as the initial conditions

to generate the following year’s background estimate.

The offline approach and experiments reported here

differ from previous DA-based climate reconstruction

papers in the following ways: 1) We use a novel time-

averaged algorithm that reconstructs the global-mean

temperature separately from the temperature field. This

allows the global-mean surface temperature to be un-

affected by covariance localization, effectively permit-

ting, rather than suppressing, spatially remote covariance

relationships with the global mean. This algorithm also

has the effect of decreasing variance loss in recon-

structions of the global mean (a common problem with

CFR approaches). 2) We use the same background en-

semble (or prior) for every reconstruction year; the

background ensemble is drawn from part of a single

climate model simulation or reanalysis data, where en-

semble members are individual years instead of in-

dependent model simulations, as is typically done in DA

schemes and as used by Bhend et al. (2012). This ap-

proach allows formore flexibility in the sense that it does

not requiremultiple model simulations to generate large

ensembles, though it could be extended to include many

model simulations over many time periods or even a

collection of different models. Because of how the

background ensemble is constructed, it will not contain

year-specific boundary condition and forcing information

(which acts to constrain ensemble variance), nor does it

allow for the forward propagation of information in time.

3) We compare our results directly with a standard CFR

approach based on principal component analysis (PCA).

This PCA approach uses an optimized regression tech-

nique known as truncated total least squares (TTLS),

which has been shown to be robust in a pseudoproxy

framework (Mann et al. 2007). 4) We provide analyses

(i.e., reconstructions) of only surface temperature so as to

directly compare the DA and PCA approaches. In prin-

ciple, DA can provide analyses of the full system state,

which constitutes all model variables at all levels and grid

cells, but this is not required in the offline approach.
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Consequently, this minimalistic DA approach is com-

putationally inexpensive and can be extended to other

fields and variables. 5) We also perform DA and PCA

pseudoproxy reconstructions with Twentieth Century

Reanalysis (20CR) (Compo et al. 2011) and a Last Glacial

Maximum (LGM) climatemodel simulation, which tests

the robustness of the algorithms and of pseudoproxy

experiments in general.

In sections 2 and 3, we review the DA and PCA

techniques and the details of ourmethodology. Section 4

gives the results for global PPEs using data from the

20CR project and from the Community Climate System

Model, version 4 (CCSM4). Robustness tests in section 4

include using PPE results for reconstructions of pre-

industrial climate given LGM data for the background

ensemble (for DA) and for the calibration period (for

PCA), as well as tests of differently chosen time periods

and red noise pseudoproxies. In section 5, we draw

conclusions and discuss the benefits of DA in addition to

discussing the issue of data choice in PPEs (GCM versus

reanalysis).

2. Mathematical background

a. PCA-based reconstruction

Here, we outline the chief features of the PCA-based

reconstruction technique used for comparison with DA.

We follow the essential aspects of the method outlined

in Mann et al. (1998), except that the TTLS method is

used for the regression of principal components (PCs)

with proxies, described below (we used T. Schneider’s

implementation, available at http://www.gps.caltech.

edu/;tapio/software.html, with the default truncation

parameter, which we found to give the best results). We

take a field of climate data (in our case annual-mean

surface temperature) over a calibration period, which

we denote Tc, and also proxy data over the calibration

and reconstruction periods, denoted as Tpc and Tpr, re-

spectively. The term Tc is an m3 n matrix, where m is

the spatial and n the temporal domain; Tpc is an n3 q

matrix, where q is the number of proxies; and Tpr is an

r3 q matrix, where r is the number of reconstruction

years. We remove the time mean1 at each grid point of

Tc, which we then denote as T0
c and area weight T0

c byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos(lat)

p
, yielding ~T0

c. A singular value decomposition

of ~T0
c gives

~T0
c 5Uc§cV

T
c , (1)

whereUc are the EOFs,§c are the singular values (SVs),

Vc are the PCs, and VT
c denotes the transpose of Vc.

Preisendorfer’s Rule N [as discussed in Wilks (2006),

p. 485] is used to determine the number p of significant

PCs to retain. The following regression equation is solved

using TTLS:

Tpc5Vcb (2)

for matrix b, which consists of p3 1 coefficient vectors

found for each of the q proxies. During the recon-

struction period, we solve the regression equation

Tpr 5Vrb (3)

for Vr (using TTLS), which is an r3 q matrix of the re-

constructed PCs. The reconstructed climate field ~T0
r is

then found via

~T0
r 5Uc§cV

T
r , (4)

where§c and Uc are assumed to remain constant through

both the calibration and reconstruction periods.

As discussed in Jones et al. (2009), several of the most

prominent CFR techniques share Eqs. (1) and (4) as key

steps in their reconstruction processes. In section 4, we

discuss some of the potential pitfalls inherent in as-

suming that the EOFs and SVs remain constant in time.

b. DA-based reconstruction

Here, we briefly review the background mathematics

of our DA approach to CFR and leave the details to the

appendix.We also compare themathematics ofDAwith

the PCA-based method discussed in section 2a. Data

assimilation typically handles observations (or ‘‘pseu-

doproxies’’ in this paper) by either filtering, which pro-

ceeds sequentially at discrete times, or smoothing, which

proceeds over time intervals. The paleoclimate re-

construction problem, however, tends to blur this dis-

tinction because of the integrated nature of many

proxies, and the treatment of time-averaged observa-

tions in DA has been discussed in Dirren and Hakim

(2005), Huntley and Hakim (2010), and Pendergrass

et al. (2012). In either filtering or smoothing, an essential

element of DA is the notion of a background, or prior,

estimate of the observations. In weather forecasting,

the prior comes from a short-term forecast based on an

earlier analysis, but this need not always be the case. In

a climate context, the prior could be a climate forecast

based on a reconstructed state at an earlier time, which if

1 In our analysis we do not standardize Tc so that we can more

easily compare the results with our DA approach. We tested the

effects of standardization on the PCA-based approach, and in the

pseudoproxy experiments no differences of consequence were

found.
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the simulation interval is long enough, amounts to using

randomly selected states from the model climate. DA

applies weights to the two estimates of the true value of

the state, the observations and the prior estimate, to

arrive at a posterior or analysis state. Assuming Gaussian-

distributed errors, the classical solution is given by

the ‘‘update equation’’ for the Kalman filter (Kalnay

2003):

xa5 xb 1K[y2H(xb)] , (5)

where xb is the prior (background) estimate of the state

vector and xa is the posterior (analysis) state vector.

Observations (pseudoproxies) are contained in vector y.

The true value of the observations are estimated by the

prior through H(xb), which is, in general, a nonlinear

vector-valued observation operator that maps xb from

the state to the observation space. For example, tree-

ring width may be estimated from gridpoint values of

temperature and moisture in the prior. The difference

between the observations and the prior estimate of the

observations, y2H(xb), is called the innovation. The

innovation represents the new information in the ob-

servations not known already from the prior. Matrix K,

the Kalman gain, weights the innovation and transforms

the innovation into state space,

K5BHT(HBHT 1R)21 , (6)

where B is the error covariance matrix for the prior and

R is the error covariance matrix for the observations.

Matrix H represents a linearization ofH about the prior

estimate. For the offline approach used here, bothB and

R are constant, though in general they may be time de-

pendent. Because B5 hxbxTb i, where angle brackets de-

note an expectation, we note that BHT can be written as

hxb(Hxb)Ti, HBHT can be written as hHxb(Hxb)Ti, and

K5 cov(xb,Hxb)[cov(Hxb,Hxb)1R]21 , (7)

where ‘‘cov’’ represents a covariance expectation. Thus,

the numerator of K ‘‘spreads’’ the information con-

tained in observations through the covariance between

the prior and the prior-estimated observations. Com-

paring Eqs. (6) and (7) also reveals that HBHT repre-

sents the error covariance matrix of the prior-estimated

observations, which is directly comparable to R. From

Eqs. (5) and (7), we see that the change in the posterior

over the prior, xa 2 xb, is determined by the linear re-

gression of the prior on the innovation. New information

in the observations is spread from the observation lo-

cations to the state variables through the covariance

between these quantities. For high-dimensional problems

such as weather and climate estimation, the prior error

covariance is typically known only through an ensemble

estimate, which is subject to sampling error.

c. Comparison of DA- and PCA-based
reconstructions

A superficial comparison of the DA method to the

PCAmethod described previously suggests that they are

closely related, because both represent linear regression

solutions to the estimation problem. An essential dif-

ference between the methods concerns the use of the

prior in the DA method: the innovation is the inde-

pendent variable for the DA method, whereas for the

PCA method the observations or proxies are the in-

dependent variable. As a result, in the present context

where we consider a ‘‘calibration’’ period, the calibra-

tion data are used differently by the two methods. For

theDAmethod, it is assumed that errors in the prior and

the observations are uncorrelated, so that the covariance

between the prior estimate and the innovation is given

by

hxb(y2Hxb)
Ti5BHT . (8)

Therefore, in the DA reconstruction method, the ob-

servational or proxy data during the calibration period

plays no ‘‘training’’ role in the calculation: DA does not

use Tpc. Errors in the observations contribute ‘‘noise’’ to

the calculation through the known error covariance

matrix R. For the PCA method, the observational data

during the calibration period are crucial, providing the

relationship between the dependent variables, the PCs,

and the observations; errors in the observations do not

explicitly enter the calculation. The PCA truncation of

PCs adds an additional approximation because it affects

the relationship between the locations and the obser-

vations. For situations where temperature at a location

covaries strongly with a proxy observation, but happens

to fall on a node of all retained principal components,

the PCA method yields a zero reconstruction. We em-

phasize that a difficulty with the DA method concerns

the operator H, which may not be well known for some

proxies.

3. Methods

a. Data sources and treatment

In this study, we use surface temperature data from

20CR [data provided by NOAA and available at http://

www.esrl.noaa.gov/psd/; Compo et al. (2011)]. We also

use surface temperature output from the Last Millen-

nium run (LM; covering 850–1850), the LastMillennium
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Extension simulation (LM Ext.; covering 1850–2005),

a Last Glacial Maximum simulation (LGM; a 100-yr run

with boundary conditions characteristic of ca. 21 000

BP), and a preindustrial control simulation (PI) all from

theCCSM4model (available at http://www.earthsystemgrid.

org/). Both ‘‘millennium’’ CCSM4 datasets are from forced

runs. Note that we only use the surface temperature data

from these existing simulations, and not the models that

produced the data.

For both the DA- and PCA-based reconstructions we

utilize the full resolution of the 20CR and CCSM4

datasets and do not interpolate the data onto coarser

grids, as has been done in some other pseudoproxy ex-

periments. For the PCA-based reconstruction, we do not

detrend the data because detrending is known to signifi-

cantly reduce variance in the dataset and adversely affect

the reconstruction skill (Wahl et al. 2006). Global-mean

temperature is computed by area weighting.

b. Pseudoproxy network and proxy noise

We choose pseudoproxy locations based on the col-

lation of 1209 proxies published in Mann et al. (2008);

the number of proxies as a function of time rapidly de-

creases in time from this value. For the global recon-

structions shown in section 4, we select locations for

pseudoproxies where there are continuous records dat-

ing back to at least 1300. This choice is somewhat arbi-

trary but does not significantly affect the results we

discuss in this paper. We select this network for several

reasons: 1) The full network of 1209 proxy locations

greatly overrepresents global proxy network density

over time periods longer than a few hundred years.

2) Reconstructions with real proxy data must screen

proxy records for quality assurance purposes, which di-

minishes the total number actually used (e.g., Mann et al.

2008). 3) While more sparse than the full proxy network,

our choice of network still maintains global coverage and

the general geographical features of the full network.

4) This reconstruction interval starts near the beginning

of the so-called European Little Ice Age, a possibly

significant climatic feature.

We construct two types of pseudoproxies by adding

either white or red noise to the annual-mean tempera-

ture time series at the locations discussed in the previous

paragraph. Proxy locations are interpolated onto model

grid points, and we remove duplicates where closely

spaced proxies interpolate onto the same grid point.

Because the 20CR and CCSM4 datasets have different

resolutions (which we retain), they differ in some proxy

locations after interpolation: for the global reconstructions,

20CR has 78 pseudoproxies, while CCSM4 has 88. These

differences do not substantially change the geographical

coverage of the proxy network.

To construct the white noise pseudoproxies, we add to

the annual-mean gridpoint temperature series Gaussian

white noise with a signal-to-noise ratio (SNR) of 0.5,

where SNR is defined as

SNR5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(X)

var(N)

s
, (9)

where X is the gridpoint temperature series, N is the

additive noise series, and ‘‘var’’ is the variance. SNR

values of 0.5 are considered to be consistent with real

proxy noise levels (Smerdon 2012) and so we use this

value throughout. Red noise with a given SNR is de-

fined by

Nr(i)5 aNr(i2 1)1 sn�(i)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 a2

p
, (10)

where Nr is a red noise time series with index i, a is the

lag-1 autocorrelation, sn 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(N)

p
is the desired stan-

dard deviation of the noise, and � is a random number

drawn from a standardized normal distribution. Similar

to the white noise pseudoproxies, those with red noise

are constructed by adding red noise to the annual-mean

gridpoint temperature series. For a typical multiproxy

network, Mann et al. (2007) estimate a mean autocorre-

lation of 0.32 to be a conservative (i.e., ‘‘redder’’ than in

reality) value. We use this autocorrelation value in our

red noise pseudoproxy tests (see Table 3, described in

greater detail below). For both the DA and PCA ap-

proaches, we compute var(X) from the calibration period

data. Bootstrap error estimates are derived by perform-

ing each reconstruction 30 times for both DA and PCA.

For each reconstruction, we generate different random

noise signals that are added to the gridpoint temperature

series to create the pseudoproxies. Every reconstruction

figure shows the mean of the 30 reconstructions and

one standard deviation about this mean for the figures

showing global-mean temperature.

c. DA implementation

For the DA-based approach, we solve the state ‘‘up-

date equation’’ [Eq. (5)] for an analysis ensemble based

upon a background ensemble, pseudoproxies, ensemble

estimates of the observations, and error estimates for

the background ensemble and the observations. The

procedure, as detailed in the appendix, follows Huntley

andHakim (2010) but with the important generalization

that the global-mean temperature is solved separately from

the spatial fields, which allows covariance localization to be

applied only to the spatially varying part of the field.

We begin with a background ensemble that is identi-

cal to the data given to PCA during the calibration
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period: the annually averaged global surface tempera-

ture fields Tc described in section 2a. These fields are

derived from part of a single model simulation or re-

analysis dataset, where ensemble members are the an-

nually averaged surface temperature fields over the

chosen calibration period (such as over the years 1880–

1980). This background ensemble is the same for each

year of the reconstruction. This approach differs from

most online DA approaches that use the previous time’s

analysis ensemble as the background ensemble for the

current time. We note that, in general, background en-

semblesmay be drawn from any collection of reasonable

states and need not be composed of an ensemble of

model simulations; in Bayesian terminology this can be

referred to as a ‘‘noninformative prior’’ that is con-

strained to climatologically plausible states. This ap-

proach allows formore flexibility in the sense that it does

not require multiple model runs to generate large en-

sembles, though it could be trivially extended to include

many model runs over many time periods or even a

collection of different models. Because of how the

background ensemble is constructed, it does not contain

year-specific boundary condition and forcing informa-

tion, but does contain the spatial covariance relation-

ships among fields associated with forcing variability. We

also note that even though the background ensemble for

each reconstruction is composed of consecutive years of

some model run, the ensemble members are linearly in-

dependent for all reconstructions shown in this paper.

For the DA approach, the observations or pseudo-

proxies are identical to those given the PCA technique

Tpr; they are the white noise– or red noise–added time

series at thepseudoproxy locationsduring the reconstruction

time period. Ensemble estimates of the proxies and

background error estimates are derived directly from

the background ensemble. Observation error estimates

are derived through the signal-to-noise equation [Eq. (9)]

using an assumed signal-to-noise ratio and data during

the calibration period (see the appendix for details).

Assimilation is performed one year at a time by seri-

ally processing the observations one at a time [a stan-

dard technique based on Houtekamer and Mitchell

(2001) and discussed inWhitaker and Hamill (2002) and

Tippett et al. (2003)], yielding an annual-mean, ensemble-

mean analysis, which is the climate field reconstruction for

that year, as well as an estimate of the ensemble-mean,

annual-mean, global-mean surface temperature; the

analysis ensemble-mean state is analogous to ~T0
r in Eq.

(4) in the PCA method. The offline nature of the DA

approach means that a climate model is not needed to

integrate from analyses to future times, which results in

tremendous computational cost savings. We provide

analyses of only the surface temperature so that the com-

parison between DA- and PCA-based methods is direct.

In principle, DA can provide analyses for up to the full

system state, which constitutes all model variables at all

levels and grid cells.

4. Reconstructions

a. Results

In this section, we focus on four global surface tem-

perature reconstructions that we compare with the ac-

tual GCM/reanalysis output during the reconstruction

period. The first is a millennial-scale reconstruction using

FIG. 1. Global-mean temperature anomaly reconstructions of the (a) DA and (b) PCA techniques using CCSM4.

Solid black lines are the mean reconstruction out of 30, and dashed–dotted lines are the actual model-mean tem-

perature. Gray shading is one std dev of the reconstructions. The calibration period is 1881–1980 and the

reconstruction period is 1300–1880. At the top of each figure, r is noted along with the number of PCs used for the

PCA-based reconstruction. The anomalies are shown with respect to the reconstruction mean.
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CCSM4 output (which includes estimates of solar and

volcanic forcing), with a calibration period from 1881 to

1980 and a reconstruction period from 1300 to 1880. The

second and third reconstructions are centennial scale,

with calibrations over 1956–2005 and reconstructions

over 1871–1955. The second reconstruction uses data

from 20CR and the third uses data from CCSM4. The

reason for this smaller time frame is because the 20CR

data only extend to 1871. The fourth reconstruction

uses a 100-yr CCSM4 Last Glacial Maximum simulation

for the calibration period and 100 yr of a CCSM4 pre-

industrial control simulation for the reconstruction period;

this reconstruction seeks to test the sensitivity of the results

when the calibration and reconstruction climates differ

significantly. Sensitivity to the white noise pseudoproxy

approximation and chosen time period is addressed by

another set of experiments that use red noise and dif-

ferent time periods for calibration and reconstruction.

Figures 1 and 2 show the reconstruction skill for

the CCSM4 data for the period 1300–1880. For the

global-mean temperature, DA slightly outperforms

PCA, with a time series correlation coefficient r of 0.92

compared to 0.87, respectively. Improvement of DA

over PCA is more evident in spatial reconstruction skill

as measured by the reconstruction–truth time series

correlation at each point (Figs. 2a,b) and by the co-

efficient of efficiency (CE) metric (Figs. 2c,d). The CE

metric for a data series comparison of length n is defined

by (Nash and Sutcliffe 1970)

CE5 12

�
n

i51

(xi 2 x̂i)
2

�
n

i51

(xi 2 x)2
, (11)

where x is the true time series, x is the true time series

mean, and x̂ is the reconstructed time series. CE has

the range 2‘ , CE # 1, where CE 5 1 corresponds to

a perfect match and CE , 0 indicates that the error

variance is greater than the true time series variance.

FIG. 2. Spatial maps of (a),(b) r and (c),(d) CE, corresponding to the reconstructions shown in Fig. 1 (calibration period: 1881–1980;

reconstruction period: 1300–1880) for (left) DA and (right) PCA. These maps show the r and CE between each gridpoint temperature

series of the mean reconstruction (mean of 30) and each actual gridpoint temperature series. Empty black boxes are centered over

pseudoproxy locations, and stippling indicates correlations that are not significant at the 95% level.
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The DA approach reconstructs temperature with higher

correlations in Asia, Greenland, and Europe as well

as around lone pseudoproxies, such as those in the

Southern Hemisphere, near New Zealand, Tasmania,

Chile, and South Africa (Figs. 2a,b). The CEmaps show

positive skill for DA throughout most of the Northern

Hemisphere while PCA has positive skill mainly around

the dense North American pseudoproxy network

(Figs. 2c,d).

The results in Figs. 1 and 2 are generally consistent

with reconstructions we performed using other GCM

datasets. For example, reconstructions based on data

from the National Aeronautics and Space Administra-

tion (NASA) Goddard Institute for Space Studies

(GISS) and Max Planck Institute Earth System Model

(MPI-ESM) climate models over millennial time scales

yield results roughly similar to those shown in Figs. 1

and 2 (not shown). We present results with CCSM4 for

brevity and because the DA reconstruction showed

similar skill across models while the PCA-based ap-

proach performed best with CCSM4; hence, the differ-

ences in skill between the DA and PCA reconstructions

shown in Figs. 1 and 2 represent a rough lower bound on

the differences between the DA and PCA reconstruc-

tions in the models we tested.

The second reconstruction uses 20CR and has a cali-

bration (background ensemble) period for PCA (DA)

of 1956–2005 and a reconstruction period of 1871–1955.

The global-mean time series is reconstructed with a

correlation of 0.69 for DA as compared to 0.19 for PCA

(Fig. 3). Figure 4 shows that for 20CRreconstructions, the

DA method also has much higher skill in reconstructing

regional temperature compared to the PCA method.

Figure 4 also shows that both DA and PCA are able to

skillfully reconstruct temperatures over North America,

where the proxy network is most dense, while only DA

has high skill around most of the remaining pseudo-

proxies. Interestingly, in comparing Figs. 1 and 3, we see

that neither PCA nor DA is able to reproduce the

global-mean temperature in the 20CR data as well as for

the CCSM4 data.

As a check against our choice of proxy network, we

performed a reconstruction for eachmethod using 20CR

where we increased the number of pseudoproxies to 278,

corresponding to a network from the Mann et al. (2008)

proxy collation that would extend back to the year 1600.

We find the same general results for PCA as shown in

Figs. 3 and 4: slightly improved, yet still low correlation

with the global-mean temperature (r 5 0.49) and areas

of higher correlation (r . 0.35) and positive CE values

only in the densest pseudoproxy networks in Europe

and North America (not shown). For DA, however,

spatial r and CE values in most locations improved, and

the reconstructed global-mean temperature correlation

increased to r 5 0.78 (not shown).

The third reconstruction is over the same time frame

as the second except that we use CCSM4 data (Figs. 5

and 6). Comparing Fig. 3 with Fig. 5 for the global-mean

temperature shows that both methods are sensitive to

the data source (i.e., GCM versus reanalysis data).2 The

FIG. 3. Global-mean temperature anomaly reconstructions of the (a) DA and (b) PCA techniques using 20CR. The calibration period is

1956–2005 and the reconstruction period is 1871–1955. Gray shading is one std dev of the 30 reconstructions.

2Note that the global-mean trends in these portions of the 20CR

and CCSM4 datasets are slightly different.
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source of the difference between the reconstructions

with 20CR and CCSM4 could be due to several effects

that will be discussed in the next section, but one clear

difference is that 20CR is constrained by observations

whereas CCSM4 is not. Comparing the spatial skill of

both methods in Figs. 4 and 6 reveals that DA again

outperforms PCA and that the PCA results are more

dataset dependent than those for DA.

The fourth reconstruction seeks to test the approach

in a situation with no trend in the underlying data (no

global warming signal) and very different training and

target climates for the reconstruction. Here, we take as

our DA background ensemble and the PCA calibration

data a 100-yr CCSM4 run of the LGM and reconstruct

100 yr of a CCSM4 preindustrial control run. Pseudo-

proxy locations are the same as in the previous CCSM4

reconstructions. We note that this is not intended as

a realistic climate reconstruction scenario (e.g., the

calibration/reconstruction periods are reversed from

a typical setting and the proxy network is not consistent

with proxy availability during the LGM), but rather

a markedly different scenario intended to explore the

robustness and range of applicability of the reconstruc-

tion techniques. Figures 7 and 8 show the global-mean

temperature reconstructions and the spatial performance

maps, respectively. These results show that the DA recon-

structions give robust results, consistent with previously

shown reconstructions, despite the radically different

calibration and reconstruction states. The PCA results

are less robust and show a global-mean temperature

reconstruction that hasmuch reduced variance compared

with the true variance.

Figure 9 summarizes the spatial maps of r and CE in

box-and-whisker plots. The distributions of the DA re-

constructions are statistically significant improvements

over the PCA reconstructions (via Student’s t tests at

the 95% level), with the largest improvement in the case

of the 20CR reconstruction shown in Fig. 4. Table 1

summarizes the mean and median values of each spatial

map.

FIG. 4. Spatial maps of (a),(b) r and (c),(d) CE, corresponding to the reconstructions shown in Fig. 3 (calibration period: 1956–2005;

reconstruction period: 1871–1955) for (left) DA and (right) PCA. For (a) and (b), stippling indicates correlations that are not significant at

the 95% level. The lower bound of CE values shown are cut off at CE 5 21.
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As a check against our choice of time frames, we

perform reconstructions similar to the four previously

shown but with different or approximately ‘‘reversed’’

calibration/reconstruction periods while keeping

everything else the same (see Table 2). As a counter-

point to the first reconstruction, we choose a calibration

period of 1781–1880, to avoid calibration with a global

warming signal, and reconstruct from 1300 to 1780. In

FIG. 5. Global-mean temperature anomaly reconstructions using (a) DA and (b) PCA techniques with CCSM4

over the same calibration and reconstruction periods as in Figs. 3 and 4 (calibration period: 1956–2005; re-

construction period: 1871–1955). Gray shading is one std dev of the 30 reconstructions.

FIG. 6. Spatial maps of (a),(b) r and (c),(d) CE, corresponding to the reconstructions shown in Fig. 5 with CCSM4 (calibration period:

1956–2005; reconstruction period: 1871–1955), for (left) DA and (right) PCA. For (a) and (b), stippling indicates correlations that are not

significant at the 95% level.
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juxtaposition to the remaining three reconstructions, we

reverse the calibration and reconstruction periods while

adjusting two of them to keep each period the same size

as the original; for example, the second reconstruction

shown in Figs. 3 and 4 uses a 50-yr calibration period

from 1956 to 2005 and an 85-yr reconstruction period

from 1871 to 1955, while the reversed reconstruction

uses a 50-yr calibration period from 1871 to 1920 and an

FIG. 7. Global-mean temperature anomaly reconstructions using (a) DA and (b) PCA techniques with 100 yr

of CCSM4 LGM data for the calibration period and 100 yr of a CCSM4 preindustrial control run for the re-

construction period. Gray shading is one std dev of the 30 reconstructions.

FIG. 8. Spatial maps of (a),(b) r and (c),(d) CE, corresponding to the reconstructions shown in Fig. 7, for (left) DA and (right) PCA. For

(a) and (b), stippling indicates correlations that are not significant at the 95% level. The lower bound of CE values shown are cut off at

CE 5 21.

436 JOURNAL OF CL IMATE VOLUME 27



85-yr reconstruction period from 1921 to 2005. A com-

parison of Table 2 with Table 1 reveals generally con-

sistent results for both DA and PCA methods: DA

always improves upon PCA and usually by similar

magnitudes as those shown in Figs. 1–8 and Table 1. We

also perform the same reconstructions as shown in Figs.

1–8, except with red noise pseudoproxies, and find sim-

ilar results compared to the white noise pseudoproxies

(cf. Table 3 andTable 1), though PCA tends to increase the

global-mean correlation and tends to decrease the spatial-

mean CE values in some red noise reconstructions.

b. Discussion and analysis

Many of the most common CFR methods rely on the

assumption of constant EOFs and SVs throughout the

reconstruction and calibration periods, as in Eq. (4) and

as discussed in Jones et al. (2009). Investigating the

20CR and CCSM4 datasets, we find that for the 20CR

and CCSM4 data, the surface temperature EOFs and

SVs change over time: the EOFs and SVs of the cali-

bration period are different from the reconstruction

period (Fig. 10, EOFs not shown). The 20CR data also

FIG. 9. Box-and-whisker plots (for clarity, outliers are not shown) of each of the spatial

reconstruction figures, for (a) r and (b) CE maps. Labels refer to DA or PCA techniques and

the figure number of the data that the box-and-whisker plots represent. All DA–PCA distri-

bution pairs are statistically distinct according to t tests for each DA–PCA comparison.

TABLE 1. Summary statistics for Figs. 1–8. The correlation of the reconstructed global-mean temperature with the actual rgmt is shown at

the top of Figs. 1, 3, 5, and 7. Both r andCE are themean values of the spatial r andCEmaps shown in Figs. 2, 4, 6, and 8. Both ~r andgCE are

the median values of the spatial r and CE maps and also correspond to those center values indicated in the box-and-whisker plots, Fig. 9.

The CCSM4 data types refer to the runs LM, LM Ext., LGM, and PI.

Figures Method Data type rgmt r ~r CE gCE
1 and 2 DA CCSM4 LM 0.92 0.36 0.38 0.13 0.12

1 and 2 PCA CCSM4 LM 0.87 0.26 0.27 20.023 20.028

3 and 4 DA 20CR 0.69 0.29 0.29 0.054 0.046

3 and 4 PCA 20CR 0.19 0.090 0.076 20.46 20.36

5 and 6 DA CCSM4 LM Ext. 0.94 0.38 0.37 0.14 0.11

5 and 6 PCA CCSM4 LM Ext. 0.71 0.26 0.26 20.015 20.024

7 and 8 DA CCSM4 LGM and PI 0.85 0.27 0.30 0.091 0.070

7 and 8 PCA CCSM4 LGM and PI 0.78 0.15 0.12 20.094 20.068
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has a broader SV spectrum compared to CCSM4 during

the calibration period in that more EOFs are required to

explain the same amount of variance. The variance

explained L is related to the SVs (or ‘‘amplitude ex-

plained’’) S by the relationship L5 S2/n, where n is the

size of the sampling dimension, in our case time. GivenL
from S, the cumulative variance explained is determined.

Figure 10 shows that 20CR has a shallower SV spectrum

compared to CCSM4 during the calibration period, so

that a given amount of variability is spread over a larger

number of patterns in 20CR.

We now speculate on the reasons for consistent spatial

skill in DA relative to the less consistent spatial skill of

PCA. The discussion of the PCA and DA techniques in

section 2 suggests that, through K, DA depends on local

spatial correlations remaining consistent through time;

this contrasts with PCA, which relies upon stationary

EOFs and SVs as well as consistent proxy–PC re-

lationships through time. As discussed in the previous

paragraph and shown in Fig. 10, the EOFs and SVs

change in time. We consider it likely that several factors

lead to the PCA’s poor spatial reconstruction in Fig. 4b,

including the fact that the SV spectrum of 20CR is flatter

in the calibration period than for CCSM4. It may also be

that nature (at least as reflected in 20CR) has less spa-

tially coherent variability than the climate model,

helping to explain (i) a modest reduction in the skill of

the reconstructed 20CR temperature compared to that

of the reconstructed GCM temperature using the DA

method, and (ii) the poor skill of the 20CR temperature

reconstruction (locally and in the global average) using

the PCAmethod. Given the potentially changing nature

of the basis upon which PCA is founded, we argue that

the local gridpoint correlations exploited by the DA tech-

nique may offer a more reliable basis for reconstructions,

particularly for spatial reconstructions.We also emphasize

that in light of the fact that pseudoproxy experiments to

date have almost exclusively relied on GCM data, our

results suggest that these experiments may give a false

impression of reconstruction skill.

5. Conclusions

The main purpose of this paper was to evaluate a data

assimilation (DA) approach for climate field reconstructions

(CFRs) and to compare the results with a standard ap-

proach based on principal component analysis (PCA).

Using several pseudoproxy experiments (PPEs), we

have shown that DA consistently outperforms PCA in

reconstructions of both the global-mean temperature

and regional patterns, although differences are espe-

cially evident in the spatial fidelity of the reconstructions.

Relative to the PCA method, the DA method improves

GCM temperature reconstructions around isolated

pseudoproxies and in several sparsely sampled regions;

DA also has much higher correlations and coefficient of

efficiency values in most geographical regions when

reconstructing 20CR temperatures.

DA does not involve any form of PCA and is thus able

to avoid several assumptions inherent in many PCA-

based CFR techniques: that empirical orthogonal func-

tions (EOFs) and singular values remain roughly constant

through time; that principal components (PCs) are well

correlated with the proxy time series through time; and

that standard selection criteria can consistently be ap-

plied across reconstruction scenarios. We attribute the

consistency of the DA spatial reconstructions to the fact

that DA relies on local temperature correlations, which

TABLE 2. Summary statistics for reconstructions with different or reversed calibration (cal) and reconstruction (recon) periods (cf. Figs. 1–8

and Table 1). Variables and data types are the same as those defined in Table 1.

Method Data type Cal (yr) Recon (yr) rgmt r CE

DA CCSM4 LM 1781–1880 1300–1780 0.92 0.34 0.14

PCA CCSM4 LM 1781–1880 1300–1780 0.85 0.26 20.0039

DA 20CR 1871–1920 1921–2005 0.86 0.48 0.21

PCA 20CR 1871–1920 1921–2005 0.65 0.076 20.21

DA CCSM4 LM Ext. 1871–1920 1921–2005 0.92 0.51 0.25

PCA CCSM4 LM Ext. 1871–1920 1921–2005 0.87 0.26 0.030

DA CCSM4 LGM and PI 100 of PI 100 of LGM 0.69 0.25 0.065

PCA CCSM4 LGM and PI 100 of PI 100 of LGM 0.57 0.13 20.18

TABLE 3. Summary statistics for reconstructions that are akin to

those shown in Figs. 1–8, except with red noise pseudoproxies (as

defined and discussed in section 3b). Variables and data types are

the same as those defined in Table 1.

Method Data type rgmt r CE

DA CCSM4 LM 0.91 0.36 0.13

PCA CCSM4 LM 0.85 0.24 20.26

DA 20CR 0.69 0.29 0.057

PCA 20CR 0.40 0.095 20.75

DA CCSM4 LM Ext. 0.92 0.38 0.14

PCA CCSM4 LM Ext. 0.80 0.26 20.043

DA CCSM4 LGM and PI 0.84 0.27 0.092

PCA CCSM4 LGM and PI 0.53 0.11 20.22
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are more robust to the assumption of stationarity than

are EOFs. Moreover, we conclude that these spatial

relationships are insensitive to details in the choice of

background ensemble, as demonstrated by the high skill

of the reconstructions of a preindustrial simulation using

background ensemble data from a simulation of the Last

Glacial Maximum.

The results of this paper show that a novel offline DA

technique provides both robust spatial reconstructions

in addition to global means. The approach is straight-

forward to extend to real proxy data and can easily

handle practical challenges in the climate reconstruc-

tion problem such as missing values, time-averaged

proxies, and error estimates. Additionally, our experi-

ments show that reanalysis data appear to differ from

model-simulated data in ways that impact the skill of

reconstruction techniques. This suggests that PPEs that

rely solely on GCM data may give a false impression of

reconstruction skill.
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APPENDIX

DA Implementation

OurDAmethod and equations are defined in section a,

followed by a description of the numerical algorithm in

section b.

a. Data assimilation method and equations

State updates for the Kalman filter are determined by

Eqs. (5) and (6), which are approximated here by an

ensemble square root technique applied to time aver-

ages (Dirren and Hakim 2005; Huntley and Hakim

2010).Here, we extend this technique to handle the global-

mean average separately from deviations from this aver-

age by augmenting the state vector x (here composed of

annual-mean surface temperatures drawn from a por-

tion of a GCM or reanalysis run) with the global mean;

we denote the augmented vector by z. As will be de-

scribed further, this is done so that the global-mean

surface temperature is not affected by covariance lo-

calization. FollowingHuntley andHakim (2010), we can

use z in the Kalman filter equations as long as the global

mean and the deviations from this mean—the rest of the

state vector—do not significantly covary.

Following Whitaker and Hamill (2002), the update

equation is split into an ensemble-mean update (de-

noted by an overbar) and an update of the perturbations

from the ensemble mean (denoted by a prime):

za5 zb 1K(y2 ye) and (A1)

FIG. 10. Cumulative variance explained (CVE) of the retained EOFs for 20CR and CCSM4 during both the (a) calibration and

(b) reconstruction periods shown in Figs. 3–6 (calibration period: 1956–2005; reconstruction period: 1871–1955). With 20CR we retain

12 PCs, and with CCSM4 we retain 10 PCs; the CVE values are normalized by the total variance explained.
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z0a5 z0b2 ~Ky0e . (A2)

The analysis and background ensemble-mean states

za and zb are column vectors of dimension m3 1; we

include only annually averaged surface temperatures

in z, with the global mean removed and placed at the

end of the state vector, so that m in this particular

instance is the number of grid points plus one. The

analysis and background perturbations from the en-

semble means z0a and z0b are of the dimension m3 n,

where n is the ensemble size. Observations (proxy data)

are given in y as a p3 1 vector, where p is the number of

observations, and ye5Hxb are observation estimates

from the prior; ye is the ensemble-mean value of di-

mension p3 1, and y0e are deviates from the mean of

dimension p3n.

We solve Eqs. (A1) and (A2) by processing the ob-

servations serially, one at a time (Houtekamer and

Mitchell 2001), for computational expedience. In this

case, at a single grid point,K simplifies [cf. Eq. (7)] to the

scalar

K5
cov(z0b, y

0
e)

var(y0e)1 r
, (A3)

where the covariance and variance estimates apply over

the ensemble, and r is the error variance for the obser-

vation. For our pseudoproxy experiments, we determine

r for each observation location through the SNR equa-

tion [Eq. (9)]: after assuming a fixed value of SNR (here

SNR 5 0.5; see discussion in section 3b), we compute

var(X) for each location during the calibration time

period and then solve for r5 var(N). In addition to the

ensemble-mean update, the ensemble perturbations

are updated by (A2), where

~K5 ½11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

var(y0e)1 r

r
�21K (A4)

and var(y0e) applies over the ensemble. The process re-

peats for each observation, with ye determined each

time from the updated ensemble.

Once za and z
0
a are computed, we compare the results of

DAwith the true climate fields by adding the global-mean

value, the last entry in the column vector za, back into the

rest of za so that we recover xa (of dimension m 2 1),

which is the annually averaged surface temperatures at all

grid points. The last entry of za is the global-mean tem-

perature reconstruction.

We note that in order to compare DA and PCA, we let

xb (from which we derive zb) be the annually averaged

climate field temperatures during the calibration period,

the same as Tc discussed in section 2a; we do not use an

ensemble of climate models to produce xb, but rather the

annually averaged fields of surface temperatures from

a single climate model simulation (or reanalysis) for the

ensemble members. For the offline approach presented

here, xb (and thereby zb) is numerically identical for each

reconstruction year. Also, the observations or pseudo-

proxies y are the same noise-added pseudoproxy time

series used for the PCA reconstructions: Tpr in Eq. (3).

To control spurious long-distance correlations due to

sampling error, we use a localization function (Gaspari

and Cohn 1999) applied to the gainK, with a length scale

of 12 000 km during the update step. We determine this

localization length by finding a minimum in mean error

variance and a ‘‘smooth’’ analysis field, so that no

‘‘edges’’ of the localizationmask are discernible. For the

reconstructions, the mean error variance is a smooth

function of the localization radius with a wide range of

values (from about 4000 km to about 16 000 km) that

were very near (within ;0.018C2) the minimum mean

error variance. We do not apply localization to the

global-mean value.

b. Algorithm sketch

For each reconstruction year, we perform the fol-

lowing steps:

(i) Construct xb, then zb from xb, and the annual

pseudoproxy vector y.

(ii) Find the error r from Eq. (9) for each pseudoproxy.

(iii) Split zb into an ensemble mean and perturbations

from this mean:

zb5 zb 1 z0b .

(iv) For each pseudoproxy:

1) Compute ye 5 Hxb.

2) Split up ye into an ensemble mean and pertur-

bations from this mean:

ye 5 ye 1 y0e .

3) Compute K from Eq. (A3) for every grid point.

4) Apply the localization function, if desired, to

K except for the last entry (the global-mean value)

5) Compute ~K from Eq. (A4) for every grid point.

6) At each grid point, update the analysis ensem-

ble mean and perturbations from this mean:

za5 zb 1K(y2 ye) and

z0a5 z0b 2 ~Ky0e .

7) Use za and z0a as zb and z0b, respectively, for the
next observation.
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(v) The full analysis ensemble may be recovered

through

za5 za1 z0a ,

where the column vector za is added to each

column vector of z0a.

(vi) After each year’s pseudoproxies have been assim-

ilated, we add the last column entry of za to the rest

of za to recover xa, the reconstructed temperature

field for that year.We also use the last column entry

of za as the reconstructed global-mean tempera-

ture for that year.

REFERENCES

Annan, J., and J. Hargreaves, 2012: Identification of climatic state

with limited proxy data. Climate Past, 8, 1141–1151.

Bhend, J., J. Franke, D. Folini, M. Wild, and S. Br€onnimann, 2012:

An ensemble-based approach to climate reconstructions.

Climate Past, 8, 963–976.

Branstator, G., H. Teng, G. A. Meehl, M. Kimoto, J. R. Knight,

M. Latif, and A. Rosati, 2012: Systematic estimates of initial-

value decadal predictability for six AOGCMs. J. Climate, 25,

1827–1846.

Compo, G. P., and Coauthors, 2011: The Twentieth Cen-

tury Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137,

1–28.

Dirren, S., and G. Hakim, 2005: Toward the assimilation of time-

averaged observations. Geophys. Res. Lett., 32, L04804,

doi:10.1029/2004GL021444.

Franke, J., J. Gonzalez-Rouco,D. Frank, andN.Graham, 2011: 200

years of European temperature variability: Insights from and

tests of the proxy surrogate reconstruction analog method.

Climate Dyn., 37, 133–150.

Gaspari, G., and S. Cohn, 1999: Construction of correlation func-

tions in two and three dimensions.Quart. J. Roy. Meteor. Soc.,

125, 723–757.

Goosse, H., H. Renssen, A. Timmermann, R. Bradley, and

M. Mann, 2006: Using paleoclimate proxy-data to select op-

timal realisations in an ensemble of simulations of the climate

of the past millennium. Climate Dyn., 27, 165–184.

——, E. Crespin, A. de Montety, M. E. Mann, H. Renssen, and

A. Timmermann, 2010: Reconstructing surface temperature

changes over the past 600 years using climate model simula-

tions with data assimilation. J. Geophys. Res., 115, D09108,

doi:10.1029/2009JD01273.

Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential en-

semble Kalman filter for atmospheric data assimilation. Mon.

Wea. Rev., 129, 123–137.

Huntley, H., and G. Hakim, 2010: Assimilation of time-averaged

observations in a quasi-geostrophic atmospheric jet model.

Climate Dyn., 35, 995–1009.

Jones, P., and Coauthors, 2009: High-resolution palaeoclimatology

of the last millennium: A review of current status and future

prospects. Holocene, 19, 3–49.

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and

Predictability. Cambridge University Press, 364 pp.

Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale

temperature patterns and climate forcing over the past six

centuries. Nature, 392, 779–787.
——, S. Rutherford, E. Wahl, and C. Ammann, 2007: Robustness

of proxy-based climate field reconstruction methods. J. Geo-

phys. Res., 112, D12109, doi:10.1029/2006JD008272.

——, Z. Zhang, M. Hughes, R. S. Bradley, S. Miller, S. Rutherford,

and F. Ni, 2008: Proxy-based reconstructions of hemispheric

and global surface temperature variations over the past two

millennia. Proc. Natl. Acad. Sci. USA, 105, 13 252–13 257.
——, J. Fuentes, and S. Rutherford, 2012: Underestimation of

volcanic cooling in tree-ring-based reconstructions of hemi-

spheric temperatures. Nat. Geosci., 5, 202–205.

Nash, J., and J. Sutcliffe, 1970: River flow forecasting through

conceptual models part I—A discussion of principles. J. Hy-

drol., 10, 282–290.

Pendergrass, A., G. Hakim, D. Battisti, and G. Roe, 2012: Coupled

air–mixed layer temperature predictability for climate re-

construction. J. Climate, 25, 459–472.

Smerdon, J., 2012: Climate models as a test bed for climate re-

construction methods: Pseudoproxy experiments. Wiley In-

terdiscip. Rev.: Climate Change, 3, 63–77.

——,A. Kaplan, E. Zorita, J. Gonzlez-Rouco, andM. Evans, 2011:

Spatial performance of four climate field reconstruction

methods targeting the Common Era. Geophys. Res. Lett., 38,
L11705, doi:10.1029/2011GL047372.

Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Ob-

stacles to high-dimensional particle filtering. Mon. Wea. Rev.,

136, 4629–4640.
Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and

J. S. Whitaker, 2003: Ensemble square root filters.Mon. Wea.

Rev., 131, 1485–1490.
van der Schrier, G., and J. Barkmeijer, 2005: Bjerknes’ hypothesis

on the coldness during AD 1790–1820 revisited.Climate Dyn.,

24, 355–371.

von Storch, H., U. Cubasch, J. Gonzalez-Rouco, J. Jones, R. Voss,

M. Widmann, and E. Zorita, 2000: Combining paleoclimatic

evidence and GCMS by means of data assimilation through

upscaling and nudging (Datun). Preprints, 11th Symp. on

Global Change Studies, Long Beach, CA, Amer.Meteor. Soc.,

3.5. [Available online at https://ams.confex.com/ams/annual2000/

webprogram/Paper11771.html.]

Wahl, E., D. Ritson, and C. Ammann, 2006: Comment on ‘‘Re-

constructing past climate from noisy data.’’ Science, 312, 529.
Whitaker, J., and T. Hamill, 2002: Ensemble data assimilation with-

out perturbed observations. Mon. Wea. Rev., 130, 1913–1924.

Widmann, M., H. Goosse, G. van der Schrier, R. Schnur, and

J. Barkmeijer, 2010: Using data assimilation to study extra-

tropical Northern Hemisphere climate over the last millen-

nium. Climate Past, 6, 627–644.

Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences.

Elsevier, 648 pp.

1 JANUARY 2014 S TE IGER ET AL . 441

https://ams.confex.com/ams/annual2000/webprogram/Paper11771.html
https://ams.confex.com/ams/annual2000/webprogram/Paper11771.html

