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From the Preface to the First Printing

A great discovery solves a great problem but there is a
grain of discovery in the solution of any problem. Your
problem may be modest; but if it challenges your curios-
ity and brings into play your inventive faculties, and if
you solve it by your own means, you may experience the
tension and enjoy the triumph of discovery. Such experi-
ences at a susceptible age may create a taste for mental
work and leave their imprint on mind and character for
a lifetime.

Thus, a teacher of mathematics has a great cpportu-
nity. If he fills his allotted time with drilling his students
in routine operations he kills their interest, hampers
their intellectual development, and misuses his oppor-
tunity. But if he challenges the curiosity of his students
by setting them problems proportionate to their knowl-
edge, and helps them to solve their problems with stimu-
lating questions, he may give them a taste for, and some
means of, independent thinking.

Also a student whose college curriculum includes some
mathematics has a singular opportunity. This opportu-
nity is lost, of course, if he regards mathematics as a
subject in which he has to earn so and so much credit
and which he should forget after the final examination
as quickly as possible. The opportunity may be lost even
if the student has some natural talent for mathematics
because he, as everybody else, must discover his talents
and tastes; he cannot know that he likes raspberry pie if
he has never tasted raspberry pie. He may manage to find
out, however, that a mathematics problem may be as
much fun as a crossword puzzle, or that vigorous mental
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vi From the Preface to the First Printing

work may be an exercise as desirable as a fast game of
tennis. Having tasted the pleasure in mathematics he will
not forget it easily and then there is a good chance that
mathematics will become something for him: a hobby, or
a tool of his profession, or his profession, or a great
ambition.

The author remembers the time when he was a student
himself, a somewhat ambitious student, eager to under-
stand a little mathematics and physics. He listened to
lectures, read books, tried to take in the solutions and
facts presented, but there was a question that disturbed
him again and again: “Yes, the solution seems to work,
it appears to be correct; but how is it possible to invent
such a solution? Yes, this experiment seems to work, this
appears to be a fact; but how can people discover such
facts? And how could I invent or discover such things by
myself?” Today the author is teaching mathematics in a
university; he thinks or hopes that some of his more eager
students ask similar questions and he tries to satisfy their
curiosity. Trying to understand not only the solution of
this or that problem but also the motives and procedures
of the solution, and trying to explain these motives and
procedures to others, he was finally led to write the
present book. He hopes that it will be useful to teachers
who wish to develop their students’ ability to solve prob-
lems, and to students who are keen on developing their
own abilities.

Although the present book pays special attention to the
requirements of students and teachers of mathematics, it
should interest anybody concerned with the ways and
means of invention and discovery. Such interest may be
more widespread than one would assume without reflec-
tion. The space devoted by popular newspapers and
magazines to crossword puzzles and other riddles seems
to show that people spend some time in solving unprac-
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tical problems. Behind the desire to solve this or that
problem that confers no material advantage, there may
be a deeper curiosity, a desire to understand the ways and
means, the motives and procedures, of solution.

The following pages are written somewhat concisely,
but as simply as possible, and are based on a long and
serious study of methods of solution. This sort of study,
called heuristic by some writers, is not in fashion now-
adays but has a long past and, perhaps, some future.

Studying the methods of solving problems, we perceive
another face of mathematics. Yes, mathematics has two
faces; it is the rigorous science of Euclid but it is also
something else. Mathematics presented in the Euclidean
way appears as a systematic, deductive science; but mathe-
matics in the making appears as an experimental, in-
ductive science. Both aspects are as old as the science of
mathematics itself. But the second aspect is new in one
respect; mathematics “in statu nascendi,” in the process
of being invented, has never before been presented in
quite this manner to the student, or to the teacher him-
self, or to the general public.

The subject of heuristic has manifold connections;
mathematicians, logicians, psychologists, educationalists,
even philosophers may claim various parts of it as belong-
ing to their special domains. The author, well aware of
the possibility of criticism from opposite quarters and
keenly conscious of his limitations, has one claim to
make: he has some experience in solving problems and
in teaching mathematics on various levels.

The subject is more fully dealt with in a more exten-
sive book by the author which is on the way to com-
pletion.

Stanford Unuversity, August 1, 1944




First.

You have to understand
the problem.

Second.

Find the connection between
the data and the unknown.
You may be obliged

to consider auxiliary problems
if an immediate connection
cannot be found.

You should obtain eventually
a plan of the solution.

Third.
Carry out your plan.

Fourth.
Examine the solution obtained.

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM

What is thé unknown? What are the data? What is the condition?

Is it possible to satisfy the condition? Is the condition sufficient to
determine the unknown? Or is it insufficient? Or redundant? Or
contradictory?

Draw a figure. Introduce suitable notation.
Separate the various parts of the condition. Can you write them down?

DEVISING A PLAN

Have you seen it before? Or have you seen the same problem in a
slightly different form?

Do you know a related problem? Do you know a theorem that could
be useful?

Look at the unknown! And try to think of a familiar problem having
the same or a similar unknown.

Here is a problem related to yours and solved before. Could you use it?
Could you use its result? Could you use its method? Should you intro-
duce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differently?
Go back to definitions.

If you cannot solve the proposed problem try to solve first some related
problem. Could you imagine a more accessible related problem? A
more general problem? A more special problem? An analogous problem?
Could you solve a part of the problem? Keep only a part of the condi-
tion, droR the other part; how far is the unknown then determined
how can it vary? Could you derive something useful from the datai;
Could you think of other data appropriate to determine the unknown?
Could you change the unknown or the data, or both if necessary, so
that the new unknown and the new data are nearer to each other? ’

Did you use all the data? Did you use the whole condition? Have you
taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN

Carrying out your pl_an of the solution, check each step. Can you see
clearly that the step is correct? Can you prove that it is correct?

LOOKING BACK

Can you check the result? Can you check the argument?
Can you derive the result differently? Can you see it at a glance?
Can you use the result, or the method, for some other problem?

¥
=,

11 anjos o moH

11 anjog o mopy

nAX




PART I. IN THE CLASSROOM

PURPOSE

1. Helping the student. One of the most important
tasks of the teacher is to help his students. This task is
not quite easy; it demands time, practice, devotion, and
sound principles.

The student should acquire as much experience of
independent work as possible. But if he is left alone with
his problem without any help or with insufficient help,
he may make no progress at all. If the teacher helps too
much, nothing is left to the student. The teacher should
help, but not too much and not too little, so that the
student shall have a reasonable share of the work.

If the student is not able to do much, the teacher
should leave him at least some illusion of independent
work. In order to do so, the teacher should help the
student discreetly, unobtrusively.

‘The best is, however, to help the student naturally,
The teacher should put himself in the student’s place, he
should see the student’s case, he should try to understand
what is going on in the student’s mind, and ask a ques-
tion or indicate a step that could have occurred to the
student himself.

2. Questions, recommendations, mental operations.
Trying to help the student effectively but unobtrusively
and naturally, the teacher is led to ask the same questions
and to indicate the same steps again and again. Thus, in
countless problems, we have to ask the question: What

1




2 In the Classroom

is the unknown? We may vary the words, and ask the
same thing in many different ways: What is required?
What do you want to find? What are you supposed to
seek? The aim of these questions is to focus the student’s
attention upon the unknown. Sometimes, we obtain the
same effect more naturally with a suggestion: Look at the
unknown! Question and suggestion aim at the same
effect; they tend to provoke the same mental opera-
tion.

It seemed to the author that it might be worth while to
collect and to group questions and suggestions which are
typically helpful in discussing problems with students.
The list we study contains questions and suggestions of
this sort, carefully chosen and arranged; they are equally
useful to the problem-solver who works by himself. If the
reader is sufficiently acquainted with the list and can see,
behind the suggestion, the action suggested, he may real-
ize that the list enumerates, indirectly, mental operations
typically useful for the solution of problems. These
operations are listed in the order in which they are most
likely to occur.

3. Generality is an important characteristic of the
questions and suggestions contained in our list. Take the
questions: What is the unknown? What are the data?
What is the condition? These questions are generally
applicable, we can ask them with good effect dealing
with all sorts of problems. Their use is not restricted to
any subject-matter. Our problem may be algebraic or
geometric, mathematical or nonmathematical, theoretical
or practical, a serious problem or a mere puzzle; it makes
no difference, the questions make sense and might help
us to solve the problem.

There is a restriction, in fact, but it has nothing to do
with the subject-matter. Certain questions and sugges-
tions of the list are applicable to “problems to find” only,

e e e ————————

5. Teacher and Student. Imitation and Practice g

not to “problems to prove.” If we have a problem of the
latter kind we must use different questions; see PROBLEMS
TO FIND, PROBLEMS TO PROVE.

4. .OoEBob sense. The questions and suggestions of
our list are general, but, except for their generality, they
are natural, simple, obvious, and proceed from plain
common sense. Take the suggestion: Look at the un-
known! And try to think of a familiar problem having
the same or a similar unknown. This suggestion advises
you to do what you would do anyhow, without any
advice, if you were seriously concerned with your prob-
lem. Are you hungry? You wish to obtain food and you
think of familiar ways of obtaining food. Have you a
problem of geometric construction? You wish to con-
struct a triangle and you think of familiar ways of con-
structing a triangle. Have you a problem of any kind?
You wish to find a certain unknown, and you think of
familiar ways of finding such an unknown, or some simi-
lar 15#:02:. If you do so you follow exactly the sug-
gestion we quoted from our list. And you are on the right
track, too; the suggestion is a good one, it suggests to you
a procedure which is very frequently successful.

All the questions and suggestions of our list are natural,
simple, obvious, just plain common sense; but they state
plain common sense in general terms. They suggest a
.nn:&z conduct which comes naturally to any person who
1s seriously concerned with his problem and has some
common sense. But the person who behaves the right way
usually does not care to express his behavior in clear
words and, possibly, he cannot express it so; our list tries
to express it so.

5. Teacher and student. Imitation and practice. There
are two aims which the teacher may have in view when
addressing to his students a question or a suggestion of
the list: First, to help the student to solve the problem
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4 In the Classroom

at hand. Second, to develop the student’s ability so that
he may solve future problems by himself. .

Experience shows that the questions and suggestions of
our list, appropriately used, very frequently help the
student. They have two common characteristics, common
sense and generality. As they proceed from plain common
sense they very often come naturally; they could have
occurred to the student himself. As they are general, they
help unobtrusively; they just indicate a general direction
and leave plenty for the student to do.

But the two aims we mentioned before are closely con-
nected; if the student succeeds in solving the problem at
hand, he adds a little to his ability to solve problems.
Then, we should not forget that our questions are gen-
eral, applicable in many cases. If the same mcmmaoz. is
repeatedly helpful, the student will scarcely fail to notice
it and he will be induced to ask the question by himself
in a similar situation. Asking the question repeatedly, he
may succeed once in eliciting the right idea. By mcn.w a
success, he discovers the right way of using the question,
and then he has really assimilated it.

The student may absorb a few questions of our list so
well that he is finally able to put to himself the right
question in the right moment and to perform the corre-
sponding mental operation naturally and vigorously.
Such a student has certainly derived the greatest possible
profit from our list. What can the teacher do in order to
obtain this best possible result?

, Solving problems is a practical skill like, let us say,
swimming. We acquire any practical skill by imitation
and practice. Trying to swim, you imitate what other
people do with their hands and feet to keep their heads
above water, and, finally, you learn to swim by prac-
ticing swimming. Trying to solve problems, you have to
observe and to imitate what other people do when soly-

6. Four Phases 5

ing problems and, finally, you learn to do problems by
doing them.

"The teacher who wishes to develop his students’ ability
to do problems must instill some interest for problems
into their minds and give them plenty of opportunity for
imitation and practice. If the teacher wishes to develop
in his students the mental operations which correspond
to the questions and suggestions of our list, he puts these
questions and suggestions to the students as often as he
can do so naturally. Moreover, when the teacher solves
a problem before the class, he should dramatize his ideas
a little and he should put to himself the same questions
which he uses when helping the students. Thanks to such
guidance, the student will eventually discover the right
use of these questions and suggestions, and doing so he
will acquire something that is more important than the
knowledge of any particular mathematical fact.

MAIN DIVISIONS, MAIN QUESTIONS

6. Four phases. Trying to find the solution, we may re-
peatedly change our point of view, our way of looking
at the problem. We have to shift our position again and
again. Our conception of the problem is likely to be
rather incomplete when we start the work; our out-
look is different when we have made some progress; it
is again different when we have almost obtained the
solution.

In order to group conveniently the questions and sug-
gestions of our list, we shall distinguish four phases of
the work. First, we have to understand the problem; we
have to see clearly what is required. Second, we have to
see how the various items are connected, how the un-
known is linked to the data, in order to obtain the idea
of the solution, to make a plan. Third, we carry out our
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plan. Fourth, we look back at the completed solution,
we review and discuss it.

Each of these phases has its importance. It may wmw.
pen that a student hits upon an mxnmvnosmzw.vdmg
idea and jumping all preparations blurts out «Smr the
solution. Such lucky ideas, of course, are most desirable,
but something very undesirable and unfortunate may
result if the student leaves out any of the four wrmmn.m
without having a good idea. The worst may happen if
the student embarks upon computations or construc-
tions without having understood the vwozmn.r It is
generally useless to carry out details without having seen
the main connection, or having made a sort of plan.
Many mistakes can be avoided if, carrying out his plan,
the student checks each step. Some of the best effects may
be lost if the student fails to reexamine and to reconsider
the completed solution.

7. Understanding the problem. It is foolish to answer
a question that you do not understand. It is sad to work
for an end that you do not desire. Such foolish and sad
things often happen, in and out of school, .g:.nﬁ .Smnrﬂ.
should try to prevent them from happening in his class.
The student should understand the problem. But H.um
should not only understand it, he should also A.mmmw.m its
solution. If the student is lacking in understanding or in
interest, it is not always his fault; the problem should be
well chosen, not too difficult and not too easy, natural
and interesting, and some time should be allowed for
natural and interesting presentation.

First of all, the verbal statement of the problem must
be understood. The teacher can check this, up to a cer-
tain extent; he asks the student to repeat the statement,
and the student should be able to state the v.wo_&nB
fluently. The student should also be able to point out
the principal parts of the problem, the unknown, the

8. Example . v

data, the condition. Hence, the teacher can seldom afford

to miss the questions: What is the unknown? Whai are

the data? What is the condition?

The student should consider the principal parts of the
problem attentively, repeatedly, and from various sides.
If there is a figure connected with the problem he should
draw a figure and point out on it the unknown and the
data. If it is necessary to give names to these objects he
should introduce suitable notation; devoting some atten-
tion to the appropriate choice of signs, he is obliged to
consider the objects for which the signs have to be chosen.
There is another question which may be useful in this
preparatory stage provided that we do not expect a
definitive answer but just a provisional answer, a guess:
Is it possible to satisfy the condition?

(In the exposition of Part II [p. 33] “Understanding
the problem” is subdivided into two stages: ‘“‘Getting ac-
quainted” and “Working for better understanding.”)

8. Example. Let us illustrate some of the points ex-
plained in the foregoing section. We take the following
simple problem: Find the diagonal of a rectangular paral-
lelepiped of which the length, the width, and the height
are known.

In order to discuss this problem profitably, the students
must be familiar with the theorem of Pythagoras, and
with some of its applications in plane geometry, but they
may have very little systematic knowledge in solid geom-
etry. The teacher may rely here upon the student’s un-
sophisticated familiarity with spatial relations.

The teacher can make the problem interesting by
making it concrete. The classroom is a rectangular paral-
lelepiped whose dimensions could be measured, and can
be estimated; the students have to find, to “measure
indirectly,” the diagonal of the classroom. The teacher
points out the length, the width, and the height of the
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classroom, indicates the diagonal with a gesture, w.:&
enlivens his figure, drawn on the blackboard, by referring
repeatedly to the classroom.

‘The dialogue between the teacher and the students
may start as follows: .

“What is the unknown?” -

“The length of the diagonal of a parallelepiped.

“W hat are the data?”

“The length, the width, and the height of the parallele-

iped.” -
: “Introduce. suitable notation. Which letter should de-

note the unknown?”

{3 2

X

width, and the height?” -

“a, b,c.”

“What is the condition, linking a, b, ¢, and x?”

“x is the diagonal of the parallelepiped of which a, b,
and ¢ are the length, the width, and the height.” L

“[s it a reasonable problem? I mean, is the condition
sufficient to determine the unknown?”’

“Yes, it is. If we know a, b, ¢, we know the parallele-
piped. If the parallelepiped is determined, the diagonal
is determined.”

9. Devising a plan. We have a plan when we know, or
know at least in outline, which calculations, computa-
tions, or constructions we have to perform in order to
obtain the unknown. The way from understanding the
problem to conceiving 2 plan may be long and tortuous.
In fact, the main achievement in the solution of a prob-
lem is to conceive the idea of a plan. This idea may
emerge gradually. Or, after apparently unsuccessful S..S_m
and a period of hesitation, it may occur suddenly, in a
flash, as a “bright idea.” The best that the teacher can .mo
for the student is to procure for him, by unobtrusive

3 .Enr letters would you choose for the length, the

9. Devising a Plan 9

help, a bright idea. The questions and suggestions we are
going to discuss tend to provoke such an idea.

In order to be able to see the student’s position, the
teacher should think of his own experience, of his diffi-
culties and successes in solving problems.

We know, of course, that it is hard to have a good idea
if we have little knowledge of the subject, and impossible
to have it if we have no knowledge. Good ideas are based
on past experience and formerly acquired knowledge.
Mere remembering is not enough for a good idea, but we
cannot have any good idea without recollecting some
pertinent facts; materials alone are not enough for con-
structing a house but we cannot construct a house with-
out collecting the necessary materials. The materials
necessary for solving a mathematical problem are certain
relevant items of our formerly acquired mathematical
knowledge, as formerly solved problems, or formerly
proved theorems. Thus, it is often appropriate to start
the work with the question: Do you know a related
problem?

The difficulty is that there are usually too many prob-
lems which are somewhat related to our present problem,
that is, have some point in common with it. How can we
choose the one, or the few, which are really useful? There
is a suggestion that puts our finger on an essential com-
mon point: Look at the unknown! And try to think of a
familiar problem having the same or a similar unknown.

If we succeed in recalling a formerly solved problem
which is closely related to our present problem, we are
lucky. We should try to deserve such luck; we may de-
serve it by exploiting it. Here is a problem related to
yours and solved before. Could you use it?

The foregoing questions, well understood and seriously
considered, very often help to start the right train of
ideas; but they cannot help always, they cannot work
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magic. If they do not work, we must look around for some
other appropriate point of contact, and explore the vari-
ous aspects of our problem; we have to vary, to transform,
to modify the problem. Could you restate the problem?
Some of the questions of our list hint specific means to
vary the problem, as generalization, specialization, use of
analogy, dropping a part of the condition, and so on; the
details are important but we cannot go into them now.
Variation of the problem may lead to some appropriate
auxiliary problem: If you cannot solve the proposed
problem try to solve first some related problem.

Trying to apply various known problems or theorems,
considering various modifications, experimenting with
various auxiliary problems, we may stray so far from our
original problem that we are in danger of losing it alto-
gether. Yet there is a good question that may bring us
back to it: Did you use all the data? Did you use the
whole condition? ,

10. Example. We return to the example considered in
section 8. As we left it, the students just succeeded in
understanding the problem and showed some mild inter-
est in it. They could now have some ideas of their own,
some initiative. If the teacher, having watched sharply,
cannot detect any sign of such initiative he has to resume
carefully his dialogue with the students. He must be pre-
pared to repeat with some modification the questions
which the students do not answer. He must be prepared
to meet often with the disconcerting silence of the
students (which will be indicated by dots .. .. D).

“Do you know a related problem?”

“Look at the unknown! Do you know a problem hav-
ing the same unknown?”’

“Well, what is the unknown?”

ro. Example 11

”.va diagonal of a parallelepiped.”
Do you know any problem with the same unknown?”

.:Zo. We have not had any problem yet about the
diagonal of a parallelepiped.”

Do you know any problem with a similar unknown?”

%o: see, the diagonal is a segment, the segment of a
straight line. Did you never solve a problem whose un-
known was the length of a line?”

Om no:.ﬁm, Smrmﬁmo?mmng EoEmBm.m.o«msmnmsnm.
to find a side of a right triangle.” ,

“Good! Here is a problem related to yours and solved
before. Could you use it?”

. “You were lucky enough to remember a problem which
Is related to your present one and which you solved

b

FIG. 1

before. S.G:E you like to use it? Could you introduce
some auxiliary element in order to make its use possible?”’

.:Hoow here, the problem you remembered is about a
triangle. Have you any triangle in your figure?”

Let us hope that the last hint was explicit enough to
wwowo_am the idea of the solution which is to introduce
a right triangle, (emphasized in Fig. 1) of which the
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required diagonal is the hypotenuse. Yet .n.w@ mnmnrmn
should be prepared for the case that even this fairly ex-
plicit hint is insufficient to shake the torpor of the stu-
dents; and so he should be prepared to use a whole
gamut of more and more explicit hints.

“Would you like to have a triangle in the figure?”

“What sort of triangle would you like to have in the
figure?” .

“You cannot find yet the diagonal; but you said that
you could find the side of a triangle. Now, what will you
do?”

“Could you find the diagonal, if it were a side of a
triangle?”

When, eventually, with more or less help, the students
succeed in introducing the decisive auxiliary element, the
right triangle emphasized in Fig. 1, the teacher should
convince himself that the students see sufficiently far
ahead before encouraging them to go into actual calcula-
tions.

“I think that it was a good idea to draw that triangle.
You have now a triangle; but have you the unknown?”

“The unknown is the hypotenuse of the triangle; we
can calculate it by the theorem of Pythagoras.”

“You can, if both legs are known; but are they?”

“One leg is given, it is ¢. And the other, I think, is not
difficult to find. Yes, the other leg is the hypotenuse of
another right triangle.” .

“Very good! Now I see that you have a plan.’

11. Carrying out the plan. To devise a plan, to con-
ceive the idea of the solution is not easy. It takes so much
to succeed; formerly acquired knowledge, good mental
habits, concentration upon the purpose, and one more
thing: good luck. To carry out the plan is much easier;
what we need is mainly patience. .

The plan gives a general outline; we have to convince

I2. Example 13

ourselves that the details fit into the outline, and so we
have to examine the details one after the other, patiently,
till everything is perfectly clear, and no obscure corner
remains in which an error could be hidden,

If the student has really conceived a plan, the teacher
has now a relatively peaceful time. The main danger is
that the student forgets his plan. This may easily happen
if the student received his plan from outside, and ac-
cepted it on the authority of the teacher; but if he worked
for it himself, even with some help, and conceived the
final idea with satisfaction, he will not lose this idea
easily. Yet the teacher must insist that the student should
check each step.

We may convince ourselves of the correctness of a step
in our reasoning either “intuitively” or “formally.” We
may concentrate upon the point in question till we see
it so clearly and distinctly that we have no doubt that
the step is correct; or we may derive the point in ques-
tion according to formal s:les. (The difference between
“insight” and “form:: proof” is clear enough in many
important cases; we may leave further discussion to
philosophers.)

"The main point is that the student should be honestly
convinced of the correctness of each step. In certain cases,
the teacher may emphasize the difference between “see-
ing” and “proving”: Can you see clearly that the step is
correct? But can you also prove that the step is correct?

12. Example. Let us resume our work at the point
where we left it at the end of section 10. The student, at
last, has got the idea of the solution. He sees the right
triangle of which the unknown x is the hypotenuse and
the given height ¢ is one of the legs; the other leg is the
diagonal of a face. The student must, possibly, be urged
to introduce suitable notation. He should choose y to de-
note that other leg, the diagonal of the face whose sides
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are a and b. Thus, he may see more clearly the idea of the
solution which is to introduce an auxiliary Eov_ﬁw
whose unknown is y. Finally, working at one right tri-
angle after the other, he may obtain (see Fig. 1)

xw = Qw + aw
v.w — nm + b2
and hence, eliminating the auxiliary unknown y,
x2 =42 -+ b2 +nw
x=Va + 2+,

The teacher has no reason to interrupt the student if
he carries out these details correctly except, possibly, to
warn him that he should check each step. Thus, the
teacher may ask: .

“Can you see clearly that the triangle with sides x, y, ¢
is a right triangle?”

To this question the student may answer honestly
“Yes” but he could be much embarrassed if the teacher,
not satisfied with the intuitive conviction of the student,
should go on asking: . .

“But can you prove that this triangle is a right tri-
angle?” . .

Thus, the teacher should rather suppress this question
unless the class has had a good initiation in solid geome-
try. Even in the latter case, there is some danger that m..ﬁ
answer to an incidental question may become the main
difficulty for the majority of the students.

13. Looking back. Even fairly good students, Swnw:
they have obtained the solution of the mnoEnB and writ-
ten down neatly the argument, shut their woowm and look
for something else. Doing so, they miss an important and
instructive phase of the work. By looking back at mrm
completed solution, by reconsidering and reexamining
the result and the path that led to it, they could consoli-

I3. hoo\z.:m Back 13

date their knowledge and develop their ability to solve
problems. A good teacher should understand and impress
on his students the view that no problem whatever is com-
pletely exhausted. There remains always something to do;
with sufficient study and penetration, we could improve
any solution, and, in any case, we can always improve our
understanding of the solution.

The student has now carried through his plan. He has
written down the solution, checking each step. Thus, he
should have good reasons to believe that his solution is
correct. Nevertheless, errors are always possible, especially
if the argument is long and involved. Hence, verifications
are desirable. Especially, if there is some rapid and in-
tuitive procedure to test either the result or the argument,
it should not be overlooked. Can you check the resuli?
Can you check the argument?

In order to convince ourselves of the presence or of the
quality of an object, we like to see and to touch it. And
as we prefer perception through two different senses, so
we prefer conviction by two different proofs: Can you de-
rive the result differently? We prefer, of course, a short
and intuitive argument to a long and heavy one: Can you
see it at a glance?

One of the first and foremost duties of the teacher is
not to give his students the impression that mathematical
problems have little connection with each other, and no
connection at all with anything else. We have a natural
opportunity to investigate the connections of a problem
when looking back at its solution. The students will find
looking back at the solution really interesting if they
have made an honest effort, and have the consciousness
of having done well. Then they are eager to see what else
they could accomplish with that effort, and how they
could do equally well another time. The teacher should
encourage the students to imagine cases in which they

ey
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could utilize again the procedure used, or apply the re-
sult obtained. Can you use the result, or the method, for
some other problem?

14. Example. In section 12, the students finally ob-
tained the solution: If the three edges of a rectangular
parallelogram, issued from the same corner, are a, b, ¢,

the diagonal is

vV + b+ 2
Can you check the result? The teacher cannot expect a
good answer to this question from inexperienced stu-
dents. The students, however, should acquire fairly early
the experience that problems “in letters” have a great
advantage over purely numerical problems; if the prob-
lem is given “in letters” its result is accessible to several
tests to which a problem “in numbers” is not susceptible
at all. Our example, although fairly simple, is sufficient
to show this. The teacher can ask several questions about
the result which the students may readily answer with
“Yes”; but an answer “No” would show a serious flaw in
the result.
“Did you use all the data? Do all the data a, b, ¢
appear in your formula for the diagonal?”
“Length, width, and height play the same role in our
question; our problem 1s @BEQOn with respect to a, b,ec.

Is the expression you obtained for the diagonal sym-

metric in a, b, ¢? Does it remain unchanged when q, b,c

are interchanged?”
“Our problem is a problem of solid geometry: to find

the diagonal of a parallelepiped with given dimensions
a, b, c. Our problem is analogous to 2 problem of plane
geometry: to find the diagonal of a rectangle with given
dimensions a, b. Is the result of our ‘solid’ problem anal-

ogous to the result of the ‘plane’ problem?”
“If the height ¢ decreases, and finally vanishes, the

14. Example v

mwum:&mwmv& becomes a parallelogram. If you putc=o
”M wmﬂ.z, formula, do you obtain the correct formula for
mHm_M%on_ of the rectangular parallelogram?”
e height c increases, the dia i
your formula show this?” S os
“If all three measures a, b
. , b, ¢ of the parallelepiped in-
“omwm in the same vn.ovo:mo? the diagonal &momzmmmmnm
n the same proportion. If, in your formula, you substi-
hwm M.Ma. a»@_. 12¢ for a, b, c respectively, the expression of
liagonal, owing to this substitution, sh
multiplied by 12. Is that so?” e
“If a, b, ¢ are measured in fe
. y : et, your formula gives th
MHmmo.bp_ measured in feet too; but if you change M_ Bmmhm
res into inch i :
P es, the formula should remain correct. Is

The two last i i i

d..‘mAa e ke vmwanm:oa are essentially equivalent; see
H..rnmm questions have several good effects. First, an in-
telligent student cannot help being impressed by mwﬂ. fact
that the formula passes so many tests. He was convinced
vmmomwm that the formula is correct because he derived it
Mwwnm M:w. But now he is more convinced, and his gain in
ence comes from a different source; it is due to a
sort o% “experimental evidence.” Then, thanks to the
mS.nmo.Em. questions, the details of the moHBEm acquire
new significance, and are linked up with various Mwna
The formula has therefore a better chance of bein wm“
B.chQ.mQ_ the knowledge of the student is nosmo:amam
Finally, these questions can be easily transferred to &Em.
lar problems. After some experience with similar nocu

_nB,m. an intelligent student may perceive the Eam% in
general ideas: use of all relevant data, variation QNEM

data, symmetry, analogy. If he gets into the habit of

directing his attention to such poi i
points, his ability t
problems may definitely profit. AR
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Can you check the argument? To recheck the argument
step by step may be necessary in difficult and important
cases. Usually, it is enough to pick out “touchy” points
for rechecking. In our case, it may be advisable to discuss
retrospectively the question which was less advisable to
discuss as the solution was not yet attained: Can you
prove that the triangle with sides x, y, ¢ is a right tri-
angle? (See the end of section 12.) ,

Can you use the result or the method for some other
problem? With a little encouragement, and after one or
two examples, the students easily find applications which
consist essentially in giving some concrele interpretation
to the abstract mathematical elements of the problem.
The teacher himself used such a concrete interpretation
as he took the room in which the discussion takes place
for the parallelepiped of the problem. A dull student may
propose, as application, to calculate the diagonal of the
cafeteria instead of the diagonal of the classroom. If the
students do not volunteer more imaginative remarks, the
teacher himself may put a slightly different problem, for
instance: “Being given the length, the width, and the
height of a rectangular parallelepiped, find the distance
of the center from one of the corners.”

The students may use the result of the problem they

just solved, observing that the distance required is one

half of the diagonal they just calculated. Or they may use |

the method, introducing suitable right triangles (the
latter alternative is less obvious and somewhat more

After this application, the teacher may discuss the con-
figuration of the four diagonals of the parallelepiped,

}
clumsy in the present case) . W

and the six pyramids of which the six faces are the bases,
the center the common vertex, and the semidiagonals the §
lateral edges. When the geometric imagination of the
students is sufiiciently enlivened, the teacher should come §
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back to his question: Can you use the result, or the
method, for some other problem? Now there is a better
chance that the students may find some more interesting
nowa.mﬁ FSQBSQQP for instance, the following:

.Hn _.”rm center of the flat rectangular top of a building
which is 21 yards long and 16 yards wide, a flagpole is to
be erected, 8 yards high. To support the pole, we need
mom». equal cables. The cables should start from the same
point, 2 yards under the top of the pole, and end at the
four corners of the top of the building. How long is each
cable?”

The students may use the method of the problem they
solved in detail introducing a right triangle in a vertical
plane, and another one in a horizontal plane. Or they
may use the result, imagining a rectangular parallele-

piped of which the diagonal, x, is one of the four cables
and the edges are

b=38

By straightforward application of the formula, x = 14.5.

For more examples, see CAN YOU USE THE RESULT?

15. Various approaches. Let us still retain, for a while,
the problem we considered in the foregoing sections 8,
10, 12, 14. The main work, the discovery of the plan, was
described in section 10. Let us observe that the teacher
noﬂ.:n have proceeded differently. Starting from the same
point as in section 10, he could have followed a somewhat
different line, asking the following questions:

“Do you know any related problem?”

“Do you know an analogous problem?”

“You see, the proposed problem is a problem of solid
geometry. Could you think of a simpler analogous prob-
lem of plane geometry?”

.on& see, the proposed problem is about a figure in
space, it is concerned with the diagonal of a rectangular

a =105 ¢=6.
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parallelepiped. What might be an analogous problem
about a figure in the plane? It should be concerned with
—the diagonal—of—a rectangular—"

“Parallelogram.”

The students, even if they are very slow and indiffer-
ent, and were not able to guess anything before, are
obliged finally to contribute at least a minute part of the
idea. Besides, if the students are so slow, the teacher
should not take up the present problem about the paral-
lelepiped without having discussed before, in order to
prepare the students, the analogous problem about the
parallelogram. Then, he can go on now as follows:

“Here is a problem related to yours and solved before.

Can you use it?”
“Should you introduce some auxiliary element in order

to make its use possible?”

Eventually, the teacher may succeed in suggesting to
the students the desirable idea. It consists in conceiving
the diagonal of the given parallelepiped as the diagonal
of a suitable parallelogram which must be introduced
into the figure (as intersection of the parallelepiped with
a plane passing through two opposite edges) . The idea is
essentially the same as before (section 10) but the ap-
proach is different. In section 10, the contact with the
available knowledge of the students was established
through the unknown; a formerly solved problem was
recollected because its unknown was the same as that of
the proposed problem. In the present section analogy
provides the contact with the idea of the solution.

16. The teacher’s method of questioning shown in the
foregoing sections 8, 10, 12, 14, 15 is essentially this:
Begin with a general question or suggestion of our list,
and, if necessary, come down gradually to more specific
and concrete questions or suggestions till you reach one

which elicits a response in the student’s mind. If you
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rm<m. to help the student exploit his idea, start again, if
momSEm.. from a general question or suggestion non::._“nm
in the list, and return again to some more special one if
necessary; and so on.

Of course, our list is just a first list of this kind; it
seems to be sufficient for the majority of simple cases, wcn
there is no doubt that it could be perfected. It is mum_uou..
ﬁwawu MMSQQ.. _a:: the suggestions from which we start
sho e simple, natural, ir 1i
e e M al, and general, and Emﬁ their list

The .mzmmmmaozm must be simple and natural because
otherwise they cannot be unobtrusive.

The suggestions must be general, applicable not only
to the present problem but to problems of all sorts, if
@Q are to help develop the ability of the student and not
just a special technique. i

The list must be short in order that the &zmma.ozm may
be often repeated, unartificially, and under varying cir-
cumstances; thus, there is a chance that they will be
eventually assimilated by the student and will contribute
to the development of a mental habit.

Ha. is necessary to come down gradually to specific sug-
gestions, in order that the student may have as great a
share of the work as possible.

This method of questioning is not a rigid one; for-
tunately so, because, in these matters, any rigid, mechani-
cal, m.v&.wumnm_ procedure is necessarily bad. Our method
admits a certain elasticity and variation, it admits various
approaches (section 15), it can be and should be so
applied that questions asked by the teacher could have
occurred to the student himself.

.Hm a reader wishes to try the method here proposed in
his class he should, of course, proceed with caution. He
should study carefully the example introduced in section
8, and the following examples in sections 18, 19, 20. He
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should prepare carefully the examples which he intends
to discuss, considering also various approaches. He should
start with a few trials and find out gradually how he can
manage the method, how the students take it, and how
much time it takes.

17. Good questions and bad questions. If the method
of questioning formulated in the foregoing section is well
understood it helps to judge, by comparison, the quality
of certain suggestions which may be offered with the in-
tention of helping the students.

Let us go back to the situation as it presented itself at
the beginning of section 10 when the question was asked:
Do you know a related problem? Instead of this, with the
best intention to help the students, the question may be
offered: Could you apply the theorem of Pythagoras?

The intention may be the best, but the question is about
the worst. We must realize in what situation it was of-
fered; then we shall see that there is a long sequence of
objections against that sort of “help.”

(1) If the student is near to the solution, he may un-
derstand the suggestion implied by the question; but if
he is not, he quite possibly will not see at all the point at
which the question is driving. Thus the question fails to
help where help is most needed.

(2) If the suggestion is understood, it gives the whole
secret away, very little remains for the student to do.

(3) The suggestion is of too special a nature. Even if
the student can make use of it in solving the present
problem, nothing is learned for future problems. The
question is not instructive.

(4) Even if he understands the suggestion, the student
can scarcely understand how the teacher came to the idea
of putting such a question. And how could he, the stu-
dent, find such a question by himself? It appears as an
unnatural surprise, as a rabbit pulled out of a hat; it is
really not instructive.
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None of these objections can be raised against the pro-

nwmcﬂom described in section 10, or against that in sec-
tion .

MORE EXAMPLES

.—m. >.m§o_u_n5 of construction. Inscribe a square in a
given triangle. Two vertices of the square should be on
the base of the triangle, the two other vertices of the

.BWE& o:.t& two other sides of the triangle, one on each
What is the unknown?” .

“A square.”

“What are the data?”

“A triangle is given, nothing else.”

“What is the condition?”
. “The four corners of the square should be on the per-
imeter of the triangle, two corners on the base, one cor-
ner on each of the other two sides.”

“Is it possible to satisfy the condition?”

“I think so. I am not so sure.” i

“You do not seem to find the problem too easy. If you
cannot solve the proposed problem, try to solve first some
related problem. Could you satisfy a part of the con-
dition?”

HSEN.“ do you mean by a part of the condition?”
. You see, the condition is concerned with all the ver-
nnmw of the square. How many vertices are there?”

our.”

“A part of the condition would be concerned with less

than four vertices. Keep only a part of the condition,

drop the other part. What part of the condition is easy
to satisfy?”

" : :
It is easy to draw a square with two vertices on the

perimeter .om the triangle—or even one with three vertices
on the perimeter!”

“Draw a figure!”
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The student draws Fig. 2. r
“You kept only a part of the condition, and you

dropped the other part. How far is the unknown now
determined?”

FIG. 2

“The square is not determined if it has only three
vertices on the perimeter of the triangle.”

“Good! Draw a figure.”

The student draws Fig. 3.

FIG. §

“The square, as you said, is not determined by the part
of the condition you kept. How can 1t vary?

“Three corners of your square are on the perimeter of
the triangle but the fourth corner is not yet there swrmno
it should be. Your square, as you said, is undetermined,
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it can vary; the same is true of its fourth corner. How
can it vary?”

“Try it experimentally, if you wish. Draw more squares
with three corners on the perimeter in the same way as
the two squares already in the figure. Draw small squares
and large squares. What seems to be the locus of the
fourth corner? How can it vary?”

The teacher brought the student very near to the
idea of the solution. If the student is able to guess that
the locus of the fourth corner is a straight line, he has
got it.

19. A problem to prove. Two angles are in different
planes but each side of one is parallel to the correspond-
ing side of the other, and has also the same direction.
Prove that such angles are equal.

What we have to prove is a fundamental theorem of
solid geometry. The problem may be proposed to stu-
dents who are familiar with plane geometry and ac-
quainted with those few facts of solid geometry which
prepare the present theorem in Euclid’s Elements. (The
theorem that we have stated and are going to prove is the
proposition 10 of Book XI of Euclid.) Not only ques-
tions and suggestions quoted from our list are printed
in italics but also others which correspond to them as
“problems to prove” correspond to “problems to find.”
(The correspondence is worked out systematically in
PROBLEMS TO FIND, PROBLEMS TO PROVE 5, 6.)

“What is the hypothesis?”

“T'wo angles are in different planes. Each side of one
is parallel to the corresponding side of the other, and has
also the same direction.

“What is the conclusion?”

“The angles are equal.”

- “Draw a figure. Introduce suitable notation.”
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The student draws the lines of Fig. 4 and chooses,
helped more or less by the teacher, the letters as in Fig. 4.

“What is the hypothesis? Say it, please, using your nota-
tion.”

“4, B, C are not in the same plane as A’, B’, C’. And
AB || A’B’, AC || A’C’. Also AB has the same direction as

A’B’, and AC the same as A’C’.”

B

FIG. 4

“What is the conclusion?”

“/BAC = /BAC'”

“Look at the conclusion! And try to think of a familiar
theorem having the same or a similar conclusion.”

“If two triangles are congruent, the corresponding
angles are equal.”

“Very good! Now here is a theorem related to yours
and proved before. Could you use it?”

“I think so but I do not see yet quite how.”

“Should you introduce some auxiliary element in order

to make its use possible?”

“Well, the theorem which you quoted so well is about
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c,mm:m.?.m_ about a pair of congruent triangles. Have you
any triangles in your figure?”

MZO. But I could introduce some. Let me join B to C
and B’ to C’. Then th 1 y
Ve o ere are two triangles, A ABC,

”Hgm: done. But what are these triangles good for?”

To prove the conclusion, /BAC = /B’A’C".”

Good! If you wish to prove this, what kind of tri-
angles do you need?”

FIG. j

“Congruent triangles. Yes, of course, I may choose B,

C,B’, ¢’ so that
AB = A’'B’, AC = A’C’.”
“<ma.< good! Now, what do you wish to prove?”
I wish to prove that the triangles are congruent,
AABC = A A’B'C.

If I could prove this, the conclusion /BAC = / B’A'C’
would follow immediately.”
) “Fine! You have a new aim, you aim at a new conclu-
sion. Look at the conclusion! And try to think of a
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familiar theorem having the same or a similar conclu-
sion.” . . .

“Two triangles are congruent if—if the three sides of
the one are equal respectively to the three sides of the
other.”

“Well done. You could have chosen a worse one. Now
here is a theorem related to yours and proved before.
Could you use it?” .

“1 could use it if I knew that BC = m c.

“That is right! Thus, what is your aim?

“To prove that BC = B'C".” .

“Try to think of a familiar theorem having the same or
a similar conclusion.” .

“Yes, I know a theorem finishing: ‘. . . then the two
lines are equal.’ But it does not fit :.r,.. .

“Should you introduce some auxiliary element in order
to make its use possible?”

“You see, how could you prove BC = B’C’ when ﬁw,wwm
is no connection in the figure between BC and B'C"?

r.b.&. you use the hypothesis? What is the hypothesis?”

“We suppose that AB Il 4’B’, AC || 4’C’. Yes, of course,
I must use that.” .

“Did you use the whole hypothesis? You say ﬂrm: AB i
A’B’. Is that all that you know about these :sm.%

“No; AB is also equal to A’B’, by construction. They
are parallel and equal to each other. And so are AC and
acr - . .

“Two parallel lines of equal length—it is an interesting

- 92 .
configuration. Have you seen it before! -

:Ommcnoﬁ.ma Yes! Parallelogram! Let me join 4 to 4’

BtoB’,and C to C".” ,
“The idea is not so bad. How many parallelograms

- VQn
have you now in your figure
:HM,B No, three. No, two. I mean, there are two of
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which you can prove immediately that they are paral-
lelograms. There is a third which seems to be a parallelo-
gram; I hope I can prove that it is one. And then the
proof will be finished!”

We could have gathered from his foregoing answers
that the student is intelligent. But after this last remark
of his, there is no doubt.

'This student is able to guess a mathematical result and
to distinguish clearly between proof and guess. He knows
also that guesses can be more or less plausible. Really, he
did profit something from his mathematics classes; he
has some real experience in solving problems, he can
conceive and exploit a good idea.

20. A rate problem. Water is flowing into a conical
vessel at the rate r. The vessel has the shape of a right
circular cone, with horizontal base, the vertex pointing
downwards; the radius of the base is a, the altitude of the

FIG. 6

cone b. Find the rate at which the surface is rising when
the depth of the water isy. Finally, obtain the numerical
value of the unknown supposing that a = 4 ft., b = 3 ft.,
I =2 cu. ft. per minute, and y = 1 ft.
The students are supposed to know the simplest rules
of differentiation and the notion of “rate of change.”
“What are the data?”
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“The radius of the base of the cone a = 4 ft., the alti-
tude of the cone b = § ft., the rate at which the water is
flowing into the vessel r = 2 cu. ft. per minute, and the
depth of the water at a certain moment, y = 1 ft.”

“Correct. The statement of the problem seems to sug-
gest that you should disregard, provisionally, the numeri-
cal values, work with the letters, express the unknown in
terms of a, b, 7, y and only finally, after having obtained
the expression of the unknown in letters, substitute the
numerical values. I would follow this suggestion. Now,
what is the unknown?”

«The rate at which the surface is rising when the depth
of the water is y.”

“What is that? Could you say it in other terms?”
“The rate at which the depth of the water is in-
creasing.”
“What is that? Could you restate it still differently?”’
“The rate of change of the depth of the water.”
“That is right, the rate of change of y. But what is the
rate of change? Go back to the definition.”
“The derivative is the rate of change of a function.”
“Correct. Now, is y a function? As we said before, we
disregard the numerical value of y. Can you imagine that
y changes?”
“Yes, y, the depth of the water, increases as the time
goes by.”
“Thus, y is a function of what?”
“Of the time ¢.”
“Good. Introduce suitable notation. How would you
write the ‘rate of change of " in mathematical symbols?”

[ W.N ”»
dt
“Good. Thus, this is your unknown. You have to ex-

press it in terms of a, b, 1, y. By the way, one of these data

is a ‘rate.’ Which one?”
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..M)ww n:..u rate at which water is flowing into the vessel.”
W m”ﬂ is that? Could you say it in other terms?”

7 1s the rate of change of the vol i
o g olume of the water in
H What is that? ﬂe:i you restate it still differently?

ow would you write it in suitable notation?”
nn\ P |&l‘\ 2
at’
“What is V?”
'The volume of the water in the vessel at the time ¢.”

Good. Thus, you have to express Y in terms of a, b,

w dt
7 How will you do it?”

If you cannot solve the proposed problem try to solve
first some related problem. If you do not see yet the con-
nection between i ing i
" i and the data, try to bring in some
simpler connection that could serve as a stepping stone.”
msmﬂbo you not mmM that there are other connections? For

ance, are y and ¥ indepen g

ok pe mmbn.om each other?

fae: n y increases, ¥ must increase too.”

..szm, Ewnm 1s a connection. What is the connection?”
. Well, V is the volume of a cone of which the altitude
is N.%szn I do not know yet the radius of the base.”

ou may consider it, nevertheless. Call i i

o - Call it something,

naq — ﬁ.kN ”

“ w -

:.mnuﬁnnr Now, what about x? Is it independent of y?”

K 0. When the depth of the water, y, increases the
radius of the free surface, x, increases too.”

“Thus, there i i i
: € is a connection. What is the connection?”
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“Of course, similar triangles.
x:y=a:b”
0 i iss
“Ope more connection, you see. H. Mo%a MOH n” Mn
i i t, you wished to know
profiting from it. Do not m0umm Yy
connection between ¥ and y.
“I have

ma%y? ,,

367

“Very good. This looks like a stepping stone, awmm ::
not? But you should not forget your goal. What is the
unknown?”

“Well b

I dy dV
. Ly
“You have to find a connection between T and

V=

other quantities. And here you have one between y, ¥,
and other quantities. What to do?
“Differentiate! Of course!

dV _ wa®® dy
a2 dt
Here it is.” . )
m.ﬁzm_ And what about the numerical values?
v _

aﬁ.nﬂ?@nwuﬂmlwﬂn,e“rﬁrob

X 16 X1dy,
9 dt

Q =

PART II. HOW TO SOLVE IT
A DIALOGUE

Qﬂnﬂmﬂ“ >Gﬁ-”mﬂn&

Where should I start? Start from the statement of the
problem.

What can I do? Visualize the problem as a whole as
clearly and as vividly as you can. Do not concern your-
self with details for the moment.

What can I gain by doing so? You should understand
the problem, familiarize yourself with it, impress its pur-
pose on your mind. The attention bestowed on the prob-

lem may also stimulate your memory and prepare for the
recollection of relevant points.

Working for Better Understanding

Where should I start? Start again from the statement
of the problem. Start when this statement is so clear to
you and so well impressed on your mind that you may
lose sight of it for a while without fear of losing it alto-
gether.

What can I do? Isolate the principal parts of your
problem. The hypothesis and the conclusion are the
principal parts of a “problem to prove”; the unknown,
the data, and the conditions are the principal parts of a
“problem to find.” Go through the principal parts of
your problem, consider them one by one, consider them
in turn, consider them in various combinations, relating

each detail to other details and each to the whole of the
problem.

33
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What can I gain by doing so? You should prepare and
clarify details which are likely to play a role afterwards.

Hunting for the Helpful Idea

Where should I start? Start from the consideration of
the principal parts of your problem. Start when these
principal parts are distinctly arranged and clearly con-
ceived, thanks to your previous work, and when your

ems responsive. .
BmmWMMN mmma: I &cw Consider your problem from various
sides and seek contacts with your formerly acquired
wsMM“w%M your problem from various .&%m. M_Bwrmﬂﬁm
different parts, examine &mﬁ.ﬁ:. details, mx.&::ﬁc. e
same details repeatedly but in different ways, combin€
the details differently, mw?omnw &.55 from Q._mmwma
sides. Try to see some new M:W::bm in each detail, some
i retat on of the whole.
Smwwwmﬁwwwﬁwna with your formerly mm@—m?nm .rsoéﬁmm.a.
Try to think of what helped you in ZP:.:.;. mmncmﬂo:m in
the past. Try to recognize moBer_.um mm:::ma. in 2? at you
examine, try to perceive something useful in what you

recognize. :

What could I perceive? A helpful idea, perhaps a de-

cisive idea that shows you at a glance the way to the very
end.

the way or a part of the way; it suggests to you more or

less distinctly how you can proceed. Ideas are more
or less complete. You are lucky if you have any idea at

1l .
: What can I do with an incomplete idea? You should

consider it. If it looks advantageous you should nw:mwmﬂ ;
it longer. If it looks reliable you should ascertain how ¢

How can an idea be helpful? It shows you the whole of
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far it leads you, and reconsider the situation. The situa-
tion has changed, thanks to your helpful idea. Consider
the new situation from various sides and seek contacts
with your formerly acquired knowledge.

What can I gain by doing so again? You may be lucky
and have another idea. Perhaps your next idea will lead
you to the solution right away. Perhaps you need a few
more helpful ideas after the next. Perhaps you will be
led astray by some of your ideas. Nevertheless you should
be grateful for all new ideas, also for the lesser ones, also
for the hazy ones, also for the supplementary ideas add-
ing some precision to a hazy one, or attempting the cor-
rection of a less fortunate one. Even if you do not have
any appreciable new ideas for a while you should be
grateful if your conception of the problem becomes more

complete or more coherent, more homogeneous or better
balanced.

Carrying Cut the Plan

Where should I start? Start from the lucky idea that
led you to the solution. Start when you feel sure of your
grasp of the main connection and you feel confident that
you can supply the minor details that may be wanting.

What can I do? Make your grasp quite secure. Carry
through in detail all the algebraic or geometric opera-
tions which you have recognized previously as feasible.
Convince yourself of the correctness of each step by for-
mal reasoning, or by intuitive insight, or both ways if you
can. If your problem is very complex you may distin-
guish “great” steps and “small” steps, each great step
being composed of several small ones. Check first the
great steps, and get down to the smaller ones afterwards.

What can I gain by doing so? A presentation of the
solution each step of which is correct beyond doubt.
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Looking Back

Where should I start? From the solution, complete and
rrect in each detail. . :
nos\aﬂ can I do? Consider the solution from <w2.oMM
: i ir
sides and seek contacts with your formerly acqu
knowledge. . e
Dosmm%mmn the details of the solution and try to szm
them as simple as you can; survey more extensive % X
of the solution and try to make them .4522.., try anw.
the whole solution at a glance. Try to Bo_Q_Q 8? i
advantage smaller or larger parts mm mrn. wno MM“MPS Mn 0
. u .
i le solution, to make it 1n
improve the who : ok
i uired knowledge a
into your formerly acq = el
i inize the method that led y :
ossible. Scrutinize the o~
Wor:mo:. try to see its point, and try to make use omw_nn =
other problems. Scrutinize the result and try to ma
of it for other problems. ; )
What can I gain by doing so? You may ?Mu a HM,MM i1
i discover new and 1n
er solution, you may dis : .
_Mm”m In any case, if you get 1nto the habit of m:?mw:wm
” L - - - su.
and scrutinizing your solutions in this miw%m%omu L
eady b
i dge well ordered and r
cquire some knowle 0 . i
Mbw you will develop your ability of solving problem

PART III. SHORT DICTIONARY
OF HEURISTIC

Analogy is a sort of similarity. Similar objects agree
with each other in some respect, analogous objects agree
in certain relations of their respective parts.

1. A rectangular parallelogram is analogous to a rec-
tangular parallelepiped. In fact, the relations between
the sides of the parallelogram are similar to those be-
tween the faces of the parallelepiped:

Each side of the parallelogram is parallel to just one
other side, and is perpendicular to the remaining sides.

Each face of the parallelepiped is parallel to just one
other face, and is perpendicular to the remaining faces.

Let us agree to call a side a “bounding element” of the
parallelogram and a face a “bounding element” of the

parallelepiped. Then, we may contract the two fore-
going statements into one that applies equally to both
figures: : :

Each bounding element is parallel to just one other
bounding element and is perpendicular to the remaining
bounding elements.

Thus, we have expressed certain relations which are
common to the two systems of objects we compared, sides
of the rectangle and faces of the rectangular parallele-
piped. The analogy of these systems consists in this com-
munity of relations.

2. Analogy pervades all our thinking, our everyday

speech and our trivial conclusions as well as artistic
ways of expression and the highest scientific achieve-

ments. Analogy is used on very different levels. People
37
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. For another example, a different viewpoint, and
urther comments se¢ WORKING BACKWARDS.

Compare also R
DUCTIO AD ABSURDUM AND
IND
PROOF, 2. i

Pedantry and mastery are opposite attitudes toward
rules.
L Ho apply a rulc to the Ictter, rigidly, unquestion-
Em; In cases where it fits and in cases where it does not
m.r 1s pedantry. Some pedants are poor fools; they never
m._m understand the rule which they apply so conscien-
tiously and so indiscriminately. Some pedants are quite
mcnmmmmm.cr they understood their rule, at least m% the
beginning (before they became pedants), and chose a
mem one that fits in many cases and fails only occasion-

Ho. apply a rule with natural ease, with judgment
noticing the cases where it fits, and without mﬁ_u, lettin ;
the words of the ruie obscure the purpose of the mnaom
or the opportuniues of the situation, is mastery.

2. The questions and suggestions of our list may be
helpful both to problem-solvers and to teachers WE
first, they must be understood, their proper use E.Gmn vm
learned, and learned by trial and error, by failure and
success, by experience in applying them. Second, their
use &.S:E never become pedantic. You should m,.mr no
question, kam no suggestion, indiscriminately, follow-
Ing some rigid habit. Be prepared for various questions
and suggestions and use your judgment. You are doin
a hard and exciting problem; the step you are mogm :mu
try next should be prompted by an attentive and open-
B.Emmm consideration of the problem before you. You
wish to help a student; what you say to your student

should proceed from a sympatheti 4 ! !
difficulties. e T Spe upespcing ol Ly
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And if you are inclined to be a pedant and must rely
upon some rule learn this one: Always use your own
brains first.

Practical problems are different in various respects
from purely mathematical problems, yet the principal
motives and procedures of the solution are essentially the
same. Practical engineering problems usually involve
mathematical problems. We will say a few words about
the differences, analogies, and connections between these
two sorts of problems.

1. An impressive practical problem is the construction
of a dam across a river. We need no special knowledge
to understand this problem. In almost prehistoric times,
long before our modern age of scientific theories, men
built dams of some sort in the valley of the Nile, and in
other parts of the world, where the crops depended on
irrigation.

Let us visualize the problem of constructing an impor-
tant modern dam.

What is the unknown? Many unknowns are involved
in a problem of this kind: the exact location of the dam,
its geometric shape and dimensions, the materials used
in its construction, and so on. .

What is the condition? We cannot answer this question
in one short sentence because there are many conditions.
In so large a project it is necessary to satisfy many im-
portant economic needs and to hurt other needs as little
as possible. The dam should provide electric power, sup-
ply water for irrigation or the use of certain communities,
and also help to control floods. On the other hand, it
should disturb as little as possible navigation, or eco-
nomically important fish-life, or beautiful scenery; and
so forth. And, of course, it should cost as little as possible
and be constructed as quickly as possible.
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What are the data? The multitude of desirable data is
tremendous. We need topographical data concerning the
vicinity of the river and its tributaries; geological data
important for the solidity of foundations, possible leak-
age, and available materials of construction; meteorologi-
cal data about annual precipitation and the height of
floods; economic data concerning the value of ground
which will be flooded, cost of materials and labor; and
so on.

Our example shows that unknowns, data, and condi-
tions are more complex and less sharply defined in a
practical problem than in a mathematical problem.

2. In order to solve a problem, we need a certain
amount of previously acquired knowledge. The modern
engineer has a highly specialized body of knowledge at
his disposal, a scientific theory of the strength of mate-
rials, his own experience, and the mass of engineering
experience stored in special technical literature. We can-
not avail ourselves of such special knowledge here but
we may try to imagine what was in the mind of an
ancient Egyptian dam-builder.

He has seen, of course, various other, perhaps smaller,
dams: banks of earth or masonry holding back the water.
He has seen the flood, laden with all sorts of debris,
pressing against the bank. He might have helped to re-
pair the cracks and the erosion left by the flood. He
might have seen a dam break, giving way under the
impact of the flood. He has certainly heard stories about
dams withstanding the test of centuries or causing catas-
trophe by an unexpected break. His mind may have
pictured the pressure of the river against the surface of
the dam and the strain and stress in its interior.

Yet the Egyptian dam-builder had no precise, quanti-
tative, scientific concepts of fluid pressure or of strain and
stress in a solid body. Such concepts form an essential
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part of the intellectual equipment of a modern engineer.
Yet the latter also uses much knowledge which has not
yet quite reached a precise, scientific level; what he
knows about erosion by flowing water, the transportation
of silt, the plasticity and other not quite clearly circum-
scribed properties of certain materials, is knowledge of
arather empirical character.

Our example shows that the knowledge needed and the
concepts used are more complex and less sharply defined
in practical problems than in mathematical problems.

3. Unknowns, data, conditions, concepts, necessary
preliminary knowledge, everything is more complex and
less sharp in practical problems than in purely mathe-
matical problems. This is an important difference, per-
haps the main difference, and it certainly implies further
differences; yet the fundamental motives and procedures
of the solution appear to be the same for both sorts of
problems. :

There is a widespread opinion that practical problems
need more experience than mathematical problems. This
may be so. Yet, very likely, the difference lies in the
nature of the knowledge needed and not in our attitude
toward the problem. In solving a problem of one or the
other kind, we have to rely on our experience with simi-
lar problems and we often ask the questions: Have you
seen the same problem in a slightly different form? Do
you know a related problem?

In solving a mathematical problem, we start from very
clear concepts which are fairly well ordered in our mind.
In solving a practical problem, we are often obliged to
start from rather hazy ideas; then, the clarification of the
concepts may become an important part of the problem.
Thus, medical science is in a better position to check
infectious diseases today than it was in the times before
Pasteur when the notion of infection itself was rather

o s v b (PSR e AL
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hazy. Have you taken into account all essential notions
involved in the problem? This is a good question for all
sorts of problems but its use varies widely with the nature
of the intervening notions.

In a perfectly stated mathematical problem all data
and all clauses of the condition are essential and must be
taken into account. In practical problems we have a mul-
titude of data and conditions; we take into account as
many as we can but we are obliged to neglect some. Take
the case of the designer of a large dam. He considers the
public interest and important economic interests but he
is bound to disregard certain petty claims and grievances.
The data of his problem are, strictly speaking, inex-
haustible. For instance, he would like to know a little
more about the geologic nature of the ground on which
the foundations must be laid, but eventually he must
stop collecting geologic data although a certain margin
of uncertainty unavoidably remains.

Did you use all the data? Did you use the whole con-
dition? We cannot miss these questions when we deal
with purely mathematical problems. In practical prob-
lems, however, we should put these questions in a modi-
fied form: Did you use all the data which could con-
tribute appreciably to the solution? Did you use all the
conditions which could influence appreciably the solu-
tion? We take stock of the available relevant informa-
tion, we collect more information if necessary, but
eventually we must stop collecting, we must draw the
line somewhere, we cannot help neglecting something.
“If you will sail without danger, you must never put to
sea.” Quite often, there is a great surplus of data which
have no appreciable influence on the final form of the
solution, .

4. The designers of the ancient Egyptian dams had to
rely on the common-sense interpretation of their experi-
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ence, they had nothing else to rely on. The Boamas
engineer cannot rely on common sense alone, especially
if his project is of a new and daring design; he has to cal-
culate the resistance of the projected dam, foresee quan-
titatively the strain and stress in its 5813.. For @mm
purpose, he has to apply the theory of elasticity (which
applies fairly well to constructions in concrete). ..Ho
apply this theory, he needs a good deal oh Emﬁrmamcnm
the practical engineering problem leads to a mathemati-
cal problem. :

This mathematical problem is too technical to be dis-
cussed here; all we can say about it is a general remark.
In setting up and in solving mathematical problems de-
rived frow practical problems, we usually content our-
selves with an approximation. We are bound to neglect
some minor data and conditions of the practical prob-
lem. Therefore it is reasonable to allow some slight
inaccuracy in the computations especially when we can
gain in simplicity what we lose in accuracy.

5. Much could be said about approximations that
would deserve general interest. We cannot suppose, how-
ever, any specialized mathematical knowledge and there-
fore we restrict ourselves to just one intuitive and
instructive example.

The drawing of geographic maps is an important prac-
tical problem. Devising a map, we often assume that the
earth is a sphere. Now this is only an approximate as-
sumption and not the exact truth. The surface of the
earth is not at all a mathematically defined surface and
we definitely know that the earth is flattened at the poles.
Assuming, however, that the earth is a sphere, we may
draw a map of it much more easily. We gain much in
simplicity and do not lose a great deal in accuracy. In
fact, let us imagine a big ball that has exactly the shape
of the earth and that has a diameter of 25 feet at its
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equator. The distance between the poles of such a ball is
less than 25 feet because the earth is flattened, but only

about one inch less. Thus the sphere yields a good prac-
tical approximation.

Problems to find, problems to prove. We draw a paral-
lel between these two kinds of problems. ,

1. The aim of a “problem to find” is to find a certain
object, the unknown of the problem.

The unknown is also called “quaesitum,” or the thing
sought, or the thing required. “Problems to find” may be
theoretical or practical, abstract or concrete, serious prob-
lems or mere puzzles. We may seek all sorts of unknowns;
we may try to find, to obtain, to acquire, to produce, or
to construct all imaginable kinds of objects. In the prob-
lem of the mystery story the unknown is a murderer. In
a chess problem the unknown is a move of the chessmen.
In certain riddles the unknown is a word. In certain ele-
mentary problems of algebra the unknown is a number.
In a problem of geometric construction the unknown is
a figure.

2. The aim of a “problem to prove” is to show con-
clusively that a certain clearly stated assertion is true, or
else to show that it is false. We have to answer the ques-
tion: Is this assertion true or false? And we have to
answer conclusively, either by proving the assertion true,
or by proving it false.

A witness afirms that the defendant stayed at home a
certain night. The judge has to find out whether this
assertion is true or not and, moreover, he has to give as
good grounds as possible for his finding. Thus, the judge
wwm a “problem to prove.” Another “problem to prove”
is to “prove the theorem of Pythagoras.” We do not say:
“Prove or disprove the theorem of Pythagoras.” It would
be better in some respects to include in the statement of
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the problem the possibility of disproving, but we may
neglect it, because we know that the chances for disprov-
ing the theorem of Pythagoras are rather slight.

3. The principal parts of a “problem to find” are the
unknown, the data, and the condition.

If we have to construct a triangle with sides a, b, ¢, the
unknown is a triangle, the data are the three lengths a,
b, ¢, and the triangle is required to satisfy the condition
that its sides have the given lengths a, b, c. 1f we have to
construct a triangle whose altitudes are a, b, ¢, the un-
known is an object of the same category as before, the
data are the same, but the condition linking the unknown
to the data is different.

4. If a “problem to prove” is a mathematical problem
of the usual kind, its principal parts are the hypothests
and the conclusion of the theorem which has to be proved
or disproved.

“If the four sides of a quadrilateral are equal, then the
two diagonals are perpendicular to each other.” The
second part starting with “then” is the conclusion, the
first part starting with “if” is the hypothesis.

[Not all mathematical theorems can be split naturally
into hypothesis and conclusion. Thus, it is scarcely pos-
sible to split so the theorem: “There are an infinity of
prime numbers.”]

5. If you wish to solve a “problem to find” you must
know, and know very exactly, its principal parts, the
unknown, the data, and the condition. Our list contains
many questions and suggestions concerned with these
parts. ;

What is the unknown? What are the data? What is the
condition?

Separate the various parts of the condition.

Find the connection between the data and the un-
kicown.
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Look at the unknown! And try to think of a familiar
problem having the same or a similar unknown.

Keep only a part of the condition, drop the other part;
how far is the unknown then determined, how can it
vary? Could you derive something useful from the data?
Could you think of other data appropriate to determine
the unknown? Could you change the unknown, or the
data, or both if necessary, so that the new unknown and
the new data are nearer to each other?

Did you use all the data? Did you use the whole con-
dition?

6. If you wish to solve a “problem to prove” you must
know, and know very exactly, its principal parts, the
hypothesis, and the conclusion. There are useful ques-
tions and suggestions concerning these parts which cor-
respond to those questions and suggestions of our list
which are specially adapted to “problems to find.”

What is the hypothesis? What is the conclusion?

Separate the various parts of the hypothests.

Find the connection between the hypothesis and the
conclusion.

Look at the conclusion! And try to think of a familiar
theorem having the same or a similar conclusion.

Keep only a part of the hypothesis, drop the other
%a.ﬁ?. is the conclusion still valid? Could you derive some-
thing useful from the hypothesis? Could you think of
another hypothesis from which you could easily derive
the conclusion? Could you change the hypothesis, or the
no.So.N:.aoP or both if necessary, so that the new hypoth-
esis and the new conclusion are nearer to each other?

Did you use the whole hypothesis?

7. “Problems to find” are more important in elemen-
tary mathematics, “problems to prove” more important
in advanced mathematics. In the present book, “prob-
lems to find” are more emphasized than the other kind,
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but the author hopes to reestablish the balance in a fuller
treatment of the subject.

Progress and achievement. Have you made any prog-
resss What was the essential achievement? We may ad-
dress questions of this kind to ourselves when we are
solving a problem or to a student whose work we super-
vise. Thus, we are used to judge, more or less confidently,
progress and achievement in concrete cases. The step
from such concrete cases to a general description is not
easy at all. Yet we have to undertake this step if we wish
to make our study of heuristic somewhat complete and
we must try to clarify what constitutes, in general, prog-
ress and achievement in solving problems.

1. In order to solve a problem, we must have some
knowledge of the subject-matter and we must select and
collect the relevant items of our existing but initially
dormant knowledge. There is much more in our con-
ception of the problem at the end than was in it at the
outset; what has been added? What we have succeeded
in extracting from our memory. In order to obtain the
solution we have to recall various essential facts. We have
to recollect formerly solved problems, known theorems,
definitions, if our problem is mathematical. Extracting
such relevant elements from our memory may be termed
mobilization.

2. In order to solve a problem, however, it is not
enough to recollect isolated facts, we must combine these
facts, and their combination must be well adapted to the
problem at hand. Thus, in solving a mathematical prob-
lem, we have to construct an argument connecting the
materials recollected to a well adapted whole. This
adapting and combining activity may be termed organ-
ization.

3. In fact, mobilization and organization can never be
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really separated. Working at the problem with concentra-
tion, we recall only facts which are more or less con-
nected with our purpose, and we have nothing to connect
and organize but materials we have recollected and
mobilized.

Mobilization and organization are but two aspects of
the same complex process which has still many other
aspects.

4. Another aspect of the progress of our work is that
our mode of conception changes. Enriched with all the
materials which we have recalled, adapted to it, and
worked into it, our conception of the problem is much
fuller at the end than it was at the outset. Desiring to
proceed from our initial conception of the problem to a
more adequate, better adapted conception, we try various
standpoints and view the problem from different sides.
We could make hardly any progress without vARIATION
OF THE PROBLEM.

5. As we progress toward our final goal we sze more
and more of it, and when we see it better we judge that we
are nearer to it. As our examination of the problem ad-
vances, we foresee more and more clearly what should be
done for the solution and how it should be done. Solving
a mathematical problem we may foresee, if we are lucky,
that a certain known theorem might be used, that the
consideration of a certain formerly solved problem might
be helpful, that going back to the meaning of a certain
technical term might be necessary. We do not foresee
such things with certainty, only with a certain degree of
plausibility. We shall attain complete certainty when we
have obtained the complete solution, but before obtain-
ing certainty we must often be satisfied with a more or
less plausible guess. Without considerations which are
only plausible and provisional, we could never find the
solution which is certain and final. We need HEURISTIC
REASONING. ,

T
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6. What is progress toward the solution? Advancing
mobilization and organization of our knowledge, evolu-
tion of our conception of the problem, increasing pre-
vision of the steps which will constitute the final
argument. We may advance steadily, by small imper-
ceptible steps, but now and then we advance abruptly,
by leaps and bounds. A sudden advance toward the solu-
tion is called a BRIGHT DEA, a good idea, a happy
thought, a brain-wave (in German there is a more tech-
nical term, Einfall). What is a bright idea? An abrupt
and momentous change of our outlook, a sudden reor-
ganization of our mode of conceiving the problem, a just
emerging confident prevision of the steps we have to take
in order to attain the solution. .

v. The foregoing considerations provide the questions
and suggestions of our list with the right sort of back-
ground. . . .

Many of these questions and suggestions aim directly
at the mobilization of our formerly acquired knowledge:
Have you seen it before? Ot nave you seen the same prob-
lem in a slightly different form? Do you know a related
problem? Do you know a theorem that could be :&.E.w
Look at the unknown! And try to think of a familiar
problem having the same or a similar :3»3&8:.

There are typical situations in which we think that we
have collected the right sort of material and we work for
a better organization of what we have mobilized: Here
is a problem related to yours and solved before. no:.E
you use it? Could you use its result? Could you use its
method? Should you introduce some auxiliary element in
order to make its use possible? .

There are other typical situations in which we think
that we have not yet collected enough material. S.xm
wonder what is missing: Did you use all the data? Did
you use the whole condition? Have you taken into ac-
count all essential notions involved in the problem?
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Some questions aim directly at the wvariation of the
problem: Could you restate the problem? Could you
restate it still differently? Many questions aim at the
variation of the problem by specified means, as going
back to the DEFINITION, using ANALOGY, GENERALIZATION,
SPECIALIZATION, DECOMPOSING AND RECOMBINING.

Still other questions suggest a trial to foresee the na-
ture of the solution we are striving to obtain: Is it pos-
sible to satisfy the condition? Is the condition sufficient
to determine the unknown? Or is it insufficient? Or re-
dundant? Or contradictory?

The questions and suggestions of our list do not men-
tion directly the bright idea; but, in fact, all are con-
cerned with it. Understanding the problem we prepare
for it, devising a plan we try to provoke it, having pro-
voked it we carry it through, looking back at the course
and the result of the solution we try to exploit it better.8

Puzzles. According to section 3, the questions and sug-
gestions of our list are independent of the subject-matter
and applicable to all kinds of problems. It is quite inter-
esting to test this assertion on various puzzles.

Take, for instance, the words

DRY OXTAIL IN REAR.

The problem is to find an “anagram,” that is, a rear-
rangement of the letters contained in the given words
" into one word. It is interesting to observe that, when we
are solving this puzzle, several questions of our list are
pertinent and even stimulating.
What is the unknown? A word.

What are the data? The four words DRY OXTAIL
IN REAR.

8 Several points discussed in this article are more fully considered
in the author’s paper, Acta Psychologica, vol. 4 (1938), pp. 113-170.
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What is the condition? The desired word has mmnmmw_
letters, the letters contained in the four given words. It is
probably a not too unusual English word.

Draw a figure. It is quite useful to mark out fifteen

blank spaces:

Could you restate the problem? We have to find a
word containing, in some arrangement, the letters

AAEIIOY DLNRRRTX.

This is certainly an equivalent restatement of the prob-
lem (see AUXILIARY PROBLEM, 6) . It may be an ma<w~q~~-
tageous restatement. Separating the <o€&.m from t e
consonants (this is important, the alphabetical order 1s
not) we see another aspect of the problem. Thus, we mm.m
now that the desired word has seven syllables unless 1t
some diphthongs.
rww\ you Smaen howem the proposed problem, try to .M&ca
first some related problem. A related problem is to oﬂ~=
words with some of the given letters. We can certainly
form short words of this kind. Then we try to find longer
and longer words. The BSM letters we use the nearer we
me to the desired word. .
BMNQnME you solve a part of the ?.QEQ.SN The mmm:.m.m
word is so long that it must have 9&:.:; parts. It 1s,
?,ovmv; a noﬁvoﬁa word, or it is m.ﬂ:&a ﬂma.oB moam
other word by adding som~ usual ending. Which usua

ending could it be?

Keep only a part of the condition and &2.% the o.tzwq
part. We may try to think of a long word with, possibly,
as many as seven syllables and relatively few consonants,
containingan X and a Y.
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Signs of progress. As Columbus and his companions
sailed westward across an unknown ocean they were
cheered whenever they saw birds. They regarded a bird
as a favorable sign, indicating the nearness of land. But
in this they were repeatedly disappointed. They watched
for other signs too. They thought that floating seaweed
or low banks of cloud might indicate land, but they were
again disappointed. One day, however, the signs mult-
plied. On Thursday, the 11th of October, 1492, “they saw
sandpipers, and a green reed near the ship. Those of the
caravel Pinic saw a cane and a pole, and they took up
another small pole which appeared to have been worked
by iron; also another bit of cane, a land-plant, and a
small board. The crew of the caravel Nifia also saw signs
of land, and a small branch covered with berries. Every-
one breathed afresh and rejoiced at these signs.” And in
fact the next day they sighted land, the first island of a
New World.

Our undertaking may be important or unimportant,
our problem of any kind—when we are working in-
tensely, we watch eagerly for signs of progress as Co-
lumbus and his companions watched for signs of ap-
proaching land. We shall discuss a few examples in order
to understand what can be reasonably regarded as a sign
of approaching the solution.

1. Examples. 1 have a chess problem. I have to mate
the black king in, say, two moves. On the chessboard
there is a white knight, quite a distance from the black
king, that is apparently superfluous. What is it good for?
I am obliged to leave this question unanswered at first.
Yet after various trials, I hit upon a new move and ob-
serve that it would bring that apparently superfluous
white knight into play. This observation gives me a new
hope. I regard it as a favorable sign: that new move has
some chance to be the right one. Why?
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In a well-constructed chess problem there is no super-
fluous piece. Therefore, we have to take into account all
chessmen on the board; we have to use all the data. The
correct solution does certainly use all the pieces, even
that apparently superfluous white knight. In this last
respect, the new move that I contemplate agrees with the
correct move that I am supposed to find. The new move
looks like the correct move; it might be the correct
move.

It is interesting to consider a similar situation in a
mathematical problem. My task is to express the area of a
triangle in terms of its three sides, a, b, and ¢. I have
already made some sort of plan. I know, more or less
clearly, which geometrical connections I have to take
into account and what sort of calculations I have to per-
form. Yet I am not quite sure whether my plan will work.
If now, proceeding along the line prescribed by my plan,
I observe that the quantity

Vb+c—a

enters into the expression of the area I am about to con-
struct, I have good reason to be cheered. Why?

In fact, it must be taken into account that the sum of
any two sides of a triangle is greater than the third side.
This involves a certain restriction. The given lengths, a,
b, and ¢ cannot be quite arbitrary; for instance, b+ ¢
must be greater than a. This is an essential part of the
condition, and we should use the whole condition. 1f
b + ¢ is not greater than a the formula I seek is bound
to become illusory. Now, the square root displayed above
becomes imaginary if b+ ¢ — a is negative—that is, if
b+ ¢ is less than a—and so the square root becomes unfit
to represent a real quantity under just those circum-
stances under which the desired expression is bound to
become illusory. Thus my formula, into which that
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square root enters, has an important property in com-
mon with the true formula for the area. My formula
looks like the true formula; it might be the true for-
mula.

Here is one more example. Some time ago, I wished to
prove a theorem in solid geometry. Without much
trouble I found a first remark that appeared to be per-
tinent; but then I got stuck. Something was missing to
finish the proof. When I gave up that day I had a much
clearer notion than at the outset how the proof should
look, how the gap should be filled; but I was not able to
fill it. The next day, after a good night’s rest, I looked
again into the question and soon hit upon an analogous
theorem in plane geometry. In a flash I was convinced
that now I had got hold of the solution and I had, 1
think, good reason too to be convinced. Why?

In fact, analogy is a great guide. The solution of a
problem in solid geometry often depends on an anal-
ogous problem in plane geometry (see ANALOGY, 3-7).
Thus, in my case, there was a chance from the outset that
the desired proof would use as a lemma some theorem
of plane geometry of the kind which actually came to my
mind. “This theorem looks like the lemma I need; it
might be the lemma I need”—such was my reasoning.

If Columbus and his men had taken the trouble to
reasomn explicitly, they would have reasoned in some simi-
lar way. They knew how the sea looks near the shore.
They knew that, more often than on the open sea, there
are birds in the air, coming from the land, and objects
floating in the water, detached from the seashore. Many
of the men must have observed such things when from
former voyages they had returned to their home port.
The day before that memorable date on which they
sighted the island of San Salvador, as the floating objects
in the water became so frequent, they thought: “It looks
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as if we were approaching some land; we may be ap-
proaching some land” m:ﬁ, “everyone breathed afresh and
rejoiced at these signs.”

2. Heuristic character of signs of \xdmﬂm%. Let us insist
upon a point which is perhaps already clear to everyone;
but it is very important uud, therefore, it should be com-
pletely clear.

The type of reasoning iilustrated by the foregoing ex-
amples deserves to be noticed and taken into account
sefiously, although it yields only a plausible indication
and not an unfailing certainty. Let us restate pedan-
tically, at full length, in rather unnatural detail, one of
these reasonings:

If we are approaching land, we often see birds.
Now we see birds.
Therefore, probably, we are mm%u.omngsm Fsm

Without the word “probably” the conclusion would
be an outright fallacy. In fact, Columbus and his com-
panions saw birds many times but were disappointed
later. Just once came the day on which they saw sand-
pipers followed by the day of discovery.

With the word *“probably” the conclusion is reason-
able and natural but by no means a proof, a demonstra-
tive conclusion; it is only an indication, a heuristic
suggestion. It would be a great mistake to forget that
such a conclusion is only probable, and to regard it as
certain. But to disregard such conclusions entirely would
be a still greater mistake. If you take a heuristic conclu-
sion as certain, you may be fooled and disappointed; but
if you neglect heuristic conclusions altogether you will
make no progress at all. The most important signs of
progress are heuristic. Should we trust them? Should we
follow them? Follow, but keep your eyes open. Trust but
look. And never renounce your judgment.
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3. Clearly expressible signs. We can look at the fore
going examples from another point of view.

In one of these examples, we regarded as a favorable
sign that we succeeded in bringing into play a datum not
used before (the white knight). We were quite right to
so regard it. In fact, to solve a problem is, essentially, to
find the connection between the data and the unknown.
Moreover we should, at least in well-stated problems, use
all the data, connect each of them with the unknown.
Thus, bringing one more datum into play is quite prop-
erly felt as progress, as a step forward.

In another example, we regarded as a favorable sign
that an essential clause of the condition was appropri-
ately taken into account by our formula. We were quite
right to so regard it. In fact, we should use the whole
condition. Thus, taking into account one more clause of
the condition is justly felt as progress, as a move in the
right direction.

In still another example, we regarded as a favorable
sign the emergence of a simpler analogous problem. This
also is justified. Indeed, analogy is one of the main
sources of invention. If other means fail, we should try
to imagine an analogous problem. Therefore, if such a
problem emerges spontaneously, by its own accord, we
naturally feel elated; we feel that we are approaching the
solution.

After these examples, we can now easily grasp the gen-
eral idea. There are certain mental operations typically
useful in solving problems. (The most usual operations
of this kind are listed in this book.) If such a typical
operation succeeds (if one more datum is connected with
the unknown—one more clause of the condition is taken
into account—a simpler analogous problem is intro-
duced) its success is felt as a sign of progress. Having
understood this essential point, we can express with some
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clearness the nature of still other signs of progress. All
we have to do is to read down our list and look at the
various questions and suggestions from our newly ac-
quired point of view. :

Thus, understanding clearly the nature of the un-
known means progress. Clearly disposing the various data
so that we can easily recall any one also means progress.
Visualizing vividly the condition as a whole may mean an
essential advance; and separating the condition into ap-
propriate parts may be an important step forward. When
we have found a figure that we can easily imagine, or a
notation that we can easily retain, we can reasonably be-
lieve that we have made some progress. Recalling a
problem related to ours and solved before may be a de-
cisive move in the right direction.

And so on, and so forth. To each mental operation
clearly conceived corresponds a certain sign clearly ex-
pressible. Our list, appropriately read, lists also signs of
progress.

Now, the questions and suggestions of our list are
&Bv_m. obvious, just plain common sense. This has been
said repeatedly and the same can be said of the con-
nected signs of progress we discuss here. To read such
signs no occult science is needed, only a little common
sense and, of course, a little experience.

4. Less clearly expressible signs. When we work in-
tently, we feel keenly the pace of our progress: when it is
rapid we are elated; when it is slow we are depressed. We
feel such differences quite clearly without being able to
point out any distinct sign. Moods, feelings, general
aspects of the situation serve to indicate our progress.
They are not easy to express. “It looks good to me,” or
“It is not so good,” say the unsophisticated. More sophis-
ticated people express themselves with some nuance:
“This is a well-balanced plan,” or “No, something is still
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lacking and that spoils the harmony.” Yet behind primi-
tive or vague expressions there is an unmistakable feeling
which we follow with confidence and which leads us
frequently in the right direction. If such feeling is very
strong and emerges suddenly, we speak of inspiration.
People usually cannot doubt their inspirations and are
sometimes fooled by them. In fact, we should treat guid-
ing feelings and inspirations just as we treat the more
clearly expressible signs of progress which we have con-
sidered before. Trust, but keep your eyes open.

Always follow your inspiration—with a grain of doubt.

[What is the nature of those guiding feelings? Is there
some less vague meaning behind words of such aesthetic
nuances as ‘“‘well-balanced,” or ‘“harmonious”? These
questions may be more speculative than practical, but
the present context indicates answers which perhaps de-
serve to be stated: Since the more clearly expressible
signs of progress are connected with the success or failure
of certain rather definite mental operations, we may
suspect that our less clearly expressible guiding feelings
may be similarly connected with other, more obscure,
mental mnaiammlwm%mvw with activities whose nature
is more v&ﬁro_omun&: and less “logical.”]

5. How signs help. 1 have a plan. I see pretty n_nma_w
where I should begin and which steps I should take first.
Yet I do not quite see the lay-out of the road farther on;
I am not quite certain that my plan will work; and, in
any case, I have still a long way to go. Therefore, I start
out cautiously in the direction indicated by my plan and
keep a lookout for signs of progress. If the signs are rare
or indistinct, I become more hesitant. And if for a long
time they fail to appear altogether, I may lose courage,
turn back, and try another road. On the other hand, if
the signs become more frequent as I proceed, it they
multiply, my hesitation fades, my spirits rise, and I move
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with increasing confidence, just as Columbus and his
companions did before sighting the island of San Sal-
vador.

Signs may guide our acts. Their absence may warn us
of a blind alley and save us time and useless exertion;
their presence may cause us to concentrate our effort
upon the right spot.

Yet signs may also be deceptive. I once abandoned a
certain path for lack of signs, but a man who came after
me and followed that path a little farther made an im-
portant discovery—to my great annoyance and long-last-
ing regret. He not only had more perseverance than I
did but he also read correctly a certain sign which I had
failed to notice. Again, I may follow a road cheerfully,
encouraged by favorable signs, and run against an un-
suspected and insurmountable obstacle.

Yes, signs may misguide us in any single case, but they
guide us right in the majority of them. A hunter may
misinterpret now and then the traces of his game but he
must be right on the average, otherwise he could not
make a living by hunting.

It takes experience to interpret the signs correctly.
Some of Columbus’s companions certainly knew by ex-
perience how the sea looks near the shore and so they
were able to read the signs which suggested that they
were approaching land. The expert knows by experience
how the situation looks and feels when the solution is
near and so he is able to read the signs which indicate
that he is approaching it. The expert knows more signs
than the inexperienced, and he knows them better; his
main advantage may consist in such knowledge. An ex-
pert hunter notices traces of game and appraises even
their freshness or staleness where the inexperienced one
is unable to see anything.

The main advantage of the exceptionally talented may
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consist in a sort of extraordinary mental sensibility. With
exquisite sensibility, he feels subtle signs of progress or
notices their absence where the less talented are unable
to perceive a difference. .

[6. Heuristic syllogism. In section 2 we came across a
mode of heuristic reasoning that deserves msirmw consid-
eration and a technical term. We begin by restating that
reasoning in the following form:

If we are approaching land, we often see birds.
Now we see birds.

Therefore, it becomes more credible that we are ap-
proaching land.

The two statements above the horizontal line ‘may be
called the premises, the statement under E.n line, the
conclusion. And the whole pattern of reasoning may be
termed a heuristic syllogism. :

The premises are stated here in the same form as in
section 2, but the conclusion is more carefully worded.
An essential circumstance is better emphasized. Colum-
bus and his men conjectured from the beginning that
they would eventually find land sailing S.mmﬁéwu.% and
they must have given some credence to this conjecture,
otherwise they would not have started out at all. As they

proceeded, they related every incident, major or minor,

to their dominating question: “Are we approaching

land?” Their confidence rose and fell as events onnc:.&,.
or failed to occur, and each man’s beliefs fluctuated more __
or less differently according to his background and char-

acter. The whole dramatic tension of the voyage is due to
such fluctuations of confidence.

The heuristic syllogism quoted exhibits a HnmmoswEﬂ_
ground for a change in the level of noammmsnm.. .Hn.u occas
sion such changes is the essential role of this kind of
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reasoning and this point is better expressed by the word-
ing given here than by the one in section 2.

The general pattern suggested by our example can be
exhibited thus:

It A4 is true, then B is also true, as we know.
Now, it turns out that B is true.

Therefore, A becomes more credible.,

Still shorter:

If 4 then B
B true

A more credible

In this schematic statement the horizontal line stands for
the word “therefore” and expresses the implication, the
essential link between the premises and the conclusion.]

[7- Nature of plausible reasoning. In this little book
we are discussing a philosophical question. We discuss it
as practically and informally and as far from high-brow
modes of expression as we can, but nevertheless our
subject is philosophical. It is concerned with the nature
of heuristic reasoning and, by extension, with a kind of
reasoning which is nondemonstrative although important
and which we shall call, for lack of a better term, plau-
sible reasoning.

The signs that convince the inventor that his idea is
good, the indications that guide us in our everyday
affairs, the circumstantial evidence of the lawyer, the in-
ductive evidence of the scientist, statistical evidence
invoked in many and diverse subjects—all these kinds of
evidence agree in two essential points. First, they do not
have the certainty of a strict demonstration. Second, they
are useful in acquiring essentially new knowledge, and
even indispensable to any not purely mathematical or
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logical knowledge; to any knowledge concerned with the
physical world. We could call the reasoning that under-
lies this kind of evidence “heuristic reasoning” or “induc-
tive reasoning” or (if we wish to avoid stretching the
meaning of existing terms) “plausible reasoning.” We
accept here the last term.

The heuristic syllogism introduced in the foregoing
may be regarded as the simplest and most widespread
pattern of plausible reasoning. It reminds us of a classi-
cal pattern of demonstrative reasoning, of the so-called
“modus tollens of hypothetical syllogism.” We exhibit
here both patterns side by side:

Demonstrative Heuristic
If A then B If A then B
B false B true
A false A more credible

‘The comparison of these patterns may be instructive. It
may grant us an insight, not easily obtainable elsewhere,
into the nature of plausible (heuristic, inductive) rea-
soning.

Both patterns have the same first premise:

If A then B.

They differ in the second premise. The statements:

B false B true

are exactly opposite to each other but they are of “simi-
lar logical nature,” they are on the same “logical level.”

‘The great difference arises after the premises. The con-
clusions

A false A more credible

are on different logical levels and their relations to their
respective premises are of a different logical nature.
"The conclusion of the demonstrative syllogism is of the
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same logical nature as the premises. Moreover, this con-
clusion is fully expressed and is fully supported by the
premises. If my neighbor and I agree to accept the prem-
ises, we cannot reasonably disagree about accepting also
the conclusion, however different our tastes or other
convictions may be.

The conclusion of the heuristic syllogism differs from
the premises in its logical nature; it is more vague, not so
sharp, less fully expressed. This conclusion is comparable
to a force, has direction and magnitude. It pushes us in a
certain direction: 4 becomes more credible. The conclu-
sion also has a certain strength: 4 may become much
more credible, or just a little more credible. The conclu-
sion is not fully expressed and is not fully supported by
the premises. The direction is expressed and is implied
by the premises, the magnitude is not. For any reasonable
person, the premises involve that 4 becomes more cred-
ible (certainly not less credible) . Yet my neighbor and I
can honestly disagree how much more credible 4 be-
comes, since our temperaments, our backgrounds, and
our unstated reasons may be different. .

In the demonstrative syllogism the premises constitute
a full basis on which the conclusion rests. If both prem-
ises stand, the conclusion stands too. If we receive some
new information that does not change our belief in the
premises, it cannot change our belief in the conclusion.

In the heuristic syllogism the premises constitute only
one part of the basis on which the conclusion rests, the
fully expressed, the “visible” part of the basis; there is an
unexpressed, invisible part, formed by something else, by
inarticulate feelings perhaps, or by unstated reasons. In
fact, it can happen that we receive some new information
that leaves our belief in both premises completely intact,
but influences the trust we put in 4 in a way just oppo-
site to that expressed in the conclusion. To find 4 more
plausible on the ground of the premises of our heuristic
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syllogism is only reasonable. Yet tomorrow I may find
grounds, not interfering at all with these premises, that
make A appear less plausible, or even definitively refute
it. The conclusion may be shaken and even overturned
completely by commotions in the invisible parts of its
foundation, although the premises, the visible part, stand
quite firm.

‘These remarks seem to make somewhat more under-
standable the nature of heuristic, inductive, and other
sorts of not demonstrative plausible reasoning, which
appear so baffling and elusive when approached from the
point of view of purely demonstrative logic. Many more
concrete examples, the consideration of other kinds of
heuristic syllogism, and an investigation of the concept
of probability and other allied concepts seem to be nec-
essary to complete the approach here chosen; cf. the
author’s Mathematics and Plausible Reasoning.]

Heuristic reasons are important although they prove
nothing. To clarify our heuristic reasons is also impor-
tant although behind any reason clarified there are many

others that remain obscure and are perhaps still more
important.

Specialization is passing from the consideration of a
given set of objects to that of a smaller set, or of just one
object, contained in the given set. Specialization is often
useful in the solution of problems.

1. Example. In a triangle, let r be the radius of the
inscribed circle, R the radius of the circumscribed circle,
and H the longest altitude. Then

r+ R=H,
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The proposed theorem is of an unusual sort. We can
scarcely remember any theorem about triangles with a
similar conclusion. If nothing else occurs to us, we may
test some special case of this unfamiliar assertion. Now,
the best known special triangle is the equilateral triangle
for which

M o pors B
3 3
so that, in this case, the assertion is correct. .

If no other idea presents itself, we may test the more
extended special case of isosceles triangles. The form of
an isosceles triangle varies with the angle at the vertex
and there are two extreme (or limiting) cases, the one in
which the angle at the vertex becomes 0°, and the other
in which it becomes 180°. In the first extreme case the

base of the isosceles triangle vanishes and visibly
1
r=o R=-H
2

thus, the assertion is verified. In the second limiting case,
however, all three heights vanish and

r=2o0 R= o H = o,

The assertion is not verified. We have proved that the
proposed theorem is false, and so we have solved our
problem. .

By the way, it is clear that the assertion is also false
for very flat isosceles triangles whose angle at the vertex
is nearly 180° so that we may “officially” disregard the
extreme cases whose consideration may appear as not
quite “orthodox.”

2. “L’exception confirme la régle.” “The exception




