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Abstract

The records of wind-blown dust (i.e., loess) in China and elsewhere are some of the

most important terrestrial records of past climate changes, stretching back over the

last ten million years. In the paleoclimate literature, intervals of increased dust gen-

eration have been almost always interpreted as being associated with more intense

or prolonged wintertime conditions. Here it is shown show that, in accordance with

modern observations, dust outbreaks in Asia are predominantly springtime phenom-

ena. During spring, frequent cyclogenesis in the lee of the Mongolian Altai, and the

passage of strong cold fronts produce the intense windstorms that loft and entrain

dust into the air. The meteorology governing such outbreaks is likely to be robust in

past climates. Contrary to the common paleoclimate presumption, it is actually the

breakdown of the Siberian High that permits the dust-producing windstorms to occur.

The importance of cold fonts in generating such windstorms suggests that cooling of

high-latitude climate during the Miocene, or during glacial intervals, might play a

significant role in the signal recorded in the loess deposits.
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1 Introduction

Dust outbreaks in Asia are among the most dramatic of meteorological phenomena in the northern

midlatitudes. Vast swaths of the continent are blanketed every year by thick clouds of wind-

blown dust generated in the desert regions of Asia (Figure 1), that accumulate on land as loess.

The reduction in visibility, the respiratory effects, and the severe windstorms that accompany the

dust outbreaks represent significant deleterious hazards: one hundred fatalities were attributed to

a severe dust storm in May, 1993 (e.g., Liu and Diamond, 2005). Dust is lofted high into the

troposphere and transported across the Pacific by the prevailing winds; plumes from big outbreaks

are sometimes still visible when they reach North America (e.g., Husar et al., 2001). The radiative

effects of loess on climate are also thought to be significant (e.g., Claquin et al., 2003), but the

magnitude of such effects is highly uncertain (e.g, IPCC, 2001). Over geologic time, loess gradually

accumulates in stratified layers downwind of the source regions, most notably in the Loess Plateau

located just northeast of the Tibetan Plateau. These deposits, some of which are hundreds of

meters thick, constitute some of the most important continuous terrestrial climate records on Earth,

stretching back over the last 8 million years (e.g., An, 2000; Porter, 2001) and possibly as far back as

22 million years (Guo et al., 2002). Dust sedimentation rate, grain size, and magnetic susceptibility

are all interpreted in terms of the climatic factors controlling them. For example, these loess records

have been argued as reflecting the progressive desertification of Asia during the Miocene (e.g.,

Guo et al., 2002), changes in atmospheric circulation and seasonality associated with the tectonic

evolution of the Tibetan Plateau (e.g., Prell and Kutzbach, 1987; An et al., 2001), an increase in

climate variability during the Pleistocene glacial cycles (e.g., An, 2000; Sun and An, 2005), and also

Heinrich events - massive discharges of icebergs in the North Atlantic that have been associated with

global changes in climate (e.g., Porter and An, 1995; Hemming, 2004). In the paleoclimate literature
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dust flux has been interpreted almost exclusively as a proxy for wintertime circulation. It is common

to find statements like: “It is widely accepted that the Chinese loess was transported mainly by

winter-monsoon winds driven by the Siberian-Mongolian high pressure system” (Ding et al., 2005,

emphasis added). In contrast, the modern literature describes a strikingly different picture: “The

simulated seasonal cycle is characterized by a maximum in late spring and a minimum in late

autumn and winter...fully agrees with the seasonal cycle established from synoptic observation

of dust storms” (Laurent et al., 2005, emphasis added). The purpose of the present study is to

evaluate this apparent contradiction. Part of the issue lies in terminology: if the annual cycle in

Asia is characterized in terms of a winter monsoon and a summer monsoon, as is commonly done

in the Chinese literature, the picture of climate is quite different from when it is described in terms

of the four seasons of winter, spring, summer, and fall. As is demonstrated in this paper, the other

issue is that there are some robust aspects of the atmospheric circulation that are responsible for

the observed springtime maximum in modern dust outbreaks. These aspects are likely to hold in

past climates too, and so I show that, all else being equal, enhanced loess generation probably more

properly reflects enhanced/prolonged spring conditions rather than winter, in contradiction to the

usual paleoclimate interpretation.

2 Asian dust outbreaks are springtime phenomena

In the modern climate, dust outbreaks in Asia are almost exclusively springtime phenomena. Fig-

ure 2 shows dust outbreak frequency, by month, for surface stations across eastern Asia, compiled

by Kurosaki and Mikami (2003) from weather station reports. The dominant peak in March, April

and May is conspicuous. Zhou and Zhang (2003) report that 82.5% of severe dust outbreaks occur

in these three months. Figure 2 also demonstrates that there is a clear association between these
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dust outbreaks and the occurrence of strong winds, defined here as a surface wind speed exceeding

6.5 ms−1 averaged over a three hour period. This speed is the commonly-assumed threshold for dust

lofting in many numerical models (e.g., Kalma et al., 1988; Tegen and Fung, 1994), although some

studies suggest a range of thresholds depending on locations and environmental factors (Kurosaki

and Mikami, 2004; Ishizuka et al., 2005; Laurent et al., 2005).

As noted in the introduction, paleoclimate studies frequently presume that because average sur-

face winds in East Asia are strongest during winter, dust production, transport, and consequent

deposition should be regarded as a proxy for wintertime circulation. While it is true that the

climatological mean surface winds maximize in winter, Figure 2 demonstrates that it is the wind

gusts that matter for dust generation, and that these wind gusts peak in spring.

Sun et al. (2003) measure dust deposition and its minearologic and magnetic properties in an

impressive array of collectors deployed across the Loess Plateau. They find a springtime peak in

deposition, but to the south it is a relatively weak peak, in apparent contradiction to Figure 2. A

possible interpretation is that some significant portion of the dust deposition in the southern region

comes from locally reworked loess, possibly disturbed by human activities (Sun et al., 2003). This

suggestion is supported by observations that dust generation in the desert regions (i.e., Figure 2;

Xuan et al., 2000; Kurosaki and Mikami, 2003) and dust transport in the Pacific (e.g., Lunt and

Valdes, 2002; Mahowald et al., 2006) are dominated by strong springtime peaks.

2.1 Cold air surges

The springtime peak in Asian dust outbreaks is well known from the modern observational record,

and the meteorological causes have been studied in detail (e.g., Middleton, 1991; Littman, 1991;
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Parungo et al., 1994; Husar et al., 2001; Uno et al., 2001; Zhou and Zhang., 2003; Liu et al., 2003;

Kurosaki and Mikami, 2003, 2004; Qian, 2004; Laurent et al., 2005; Aoki et al., 2005; Ding et al.,

2005). The peak wind gusts responsible for the outbreaks are associated with the passage of strong,

and largely dry, cold fronts. Several factors associated with cold fronts lead to these windstorms.

The intense temperature gradients across the front produce strong vertical gradients in the wind

because of tendency towards thermal wind balance (e.g., Wallace and Hobbs, 2005), drawing strong

winds close to the surface. Secondly, the strong vertical wind shear also enhances shear instability

and mixing. Thirdly, the advancing cold dense air tends to plow under the receding warm air,

lifting it and producing near surface convection. It is the combination of the close proximity of

high momentum air to the surface and enhanced turbulent mixing that leads to strong surface wind

gusts during frontal passages (e.g., Wallace and Hobbs, 2005; Bluestein, 1993, Pauley et al., 1996).

Figure 3 shows station data from Qitai in Xinjiang province China, near the Mongolian border

(44.01 oN, 89.56 oE) for April 2001, during which several major dust outbreaks occurred. All

outbreaks were marked by sharp drops in visibility (Figure 3a) as well as weather reports of dust

in the air. In the case of the first event, the frontal passage is clearly denoted by the steep drop

in the daily-mean temperature of 10oC over the three days (Figure 3b). This cold front was also

accompanied by high winds, with maximum sustained (two minute average) wind speeds exceeding

10 m s−1 on the 5th and the 7th of April (Figure 3c). Precipitation of 4 mm was recorded over this

period. Nearby stations also reported exceptionally strong winds: at Karamay (45.60 oN, 84.85 oE)

gusts topped 34 m s−1, and at Shisanjianfang (43.2 oN, 91.71 oE) gusts exceeding 40 m s−1 were

recorded. This basic pattern is repeated for the other events, although with some variations. In the

outbreak on the April 16th, the maximum sustained wind speeds again topped 10 m s−1, although

the temperature drop was not as sharp. On the 20th peak sustained winds were only 7.5 m s−1,
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not much above the background level for the month and possibly suggesting a non-local source for

the dust. However, on the 27th and the 28th, maximum sustained winds again exceeded 10 m s−1.

Precipitation totaled 10 mm between the 26th and 29th.

The relationships in Figure 3 do not demonstrate per force that the dust originated close to Qitai, or

that transport, wind direction, soil moisture, vegetation, limited rain-out, or mesoscale interactions

with local topography did not play a role in altering the concentration of dust and affecting the

visibility. These factors, and probably others, cause variations in the relationships between falling

temperatures, wind gusts, and local visibility. Nonetheless this and other station data during peri-

ods of major dust storms (e.g., Zhou and Zhang, 2003) support the basic climatological connections

between springtime gustiness and dust outbreaks seen in Figure 2.

The recurrent role of cold air masses in dust outbreaks in eastern Asia can be seen from near-

surface air temperatures. Figure 4 shows six maps of 850 mb (∼1 km above sea level) daily-

mean temperatures from the National Center for Environmental Prediction/National Center for

Atmospheric Research (NCEP-NCAR) reanalysis data sets (Kalnay et al., 1996), selected from

days when Zhou and Zhang (2003) report major Asian dust outbreaks over the last 50 years. As is

clear by comparison with climatological mean, the dust-generating cold fronts delimit the leading

edge of large-scale cold air surges from Siberia. Although details differ from storm-to-storm, this

basic picture is repeated for all of the major dust storms reported by Zhou and Zhang (2003).

The southeastward surges of cold air can be seen by following the synoptic development during the

buildup to dust outbreaks. Figure 5 shows the 850 mb temperature, and also the 500 mb geopo-

tential heights (essentially streamlines of the atmospheric flow at approximately 5.5 km altitude)

for the 5 days leading up to the two major dust outbreaks in April, 2001 seen in Figure 3. In both
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cases the growth of a wave in the mid-tropospheric circulation produces strongly northerly flow

over several days. This cold air is also advected by the general westerly circulation, and hence the

cold air originates in northwestern or central Siberia. This basic evolution of the circulation, which

is repeated for all of the large dust storms reported by Zhou and Zhang (2003), is the canonical

picture for these Asian dust storms in the modern climate: in springtime cold air builds over Siberia

during quiescent periods; during synoptic development of midlatitude storms this cold air is drawn

southward. Strong gusts at the leading front of this cold surge lofts dust into the atmosphere where

it is transported by the prevailing winds.

Given the complex regional orography, it is not surprising that mountain airflow dynamics also

appear to play an important role in the details of any given windstorm. Aoki et al. (2004) use a

high-resolution numerical model to study one dust storm in the low-lying Tarim Basin. During the

passage of a cold front, the cold, dense air plunges through a gap in the topography at the eastern

end of the basin. Thus, despite the large-scale flow being primarily westerly, the winds that raise

the dust in the basin are actually easterly at the time of the windstorm.

2.2 The causes of the springtime predominance

In order to identify possible causes of changes in loess records, it is important to understand why

there is a preponderance of dust outbreaks in springtime and not in other seasons. The foregoing

analyses have shown that there are two major prerequisites for dust-generating windstorms: the

growth of synoptic-scale disturbances in the atmospheric circulation and strong meridional tem-

perature gradients. Together these combine to generate strong cold fronts which are the source of

the windstorms.
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Figure 6, adapted from Chen et al. (1991), shows the frequency of cyclogenesis (i.e., the de-

velopment of synoptic cylones) over Asia, as a function of season. Similar results are also seen

in other diagnostics (e.g., Hoskins and Hodges, 2002; and analyses available at http://www.nerc-

essc.ac.uk/∼kih/AMIP2/era results new.html). Focusing first over the continent, a striking obser-

vation is the almost complete absence of wintertime cyclogenesis in central Asia, compared to the

other three seasons. The frequency of cyclogenesis in spring is over three times as great as in winter.

Summer and fall cyclogenesis also exceeds that in winter by at least a factor of two.

The cause of this dearth of wintertime storms is the dominant influence of the Siberian high pressure

system (Figure 7a), which reflects strong land cooling and accompanying net descent of air over

Asia. This results in a very stable air mass that damps vertical motions and inhibits interactions

between the surface and the middle and upper troposphere. These interactions are important for

the development of synoptic cyclones (e.g., Eady, 1949; Holton, 2005). A compounding factor is

that the upper tropospheric subtropical jet, a focus for the propagation of upper level waves seen in

Figure 5, is displaced south of the Tibetan Plateau in winter (e.g., Peixoto and Oort, 1992; Hoskins

and Hodges, 2002).

It needs to be be emphasized therefore, that contrary to the common assertion in the paleoclimate

literature, it is not the case that dust storms are driven by the winds associated with the Siberian

High. In fact, exactly the opposite is true, it is actually the breakdown of the Siberian High that

permits the occurrence of dust storms. Counter to the usual paleoclimate inference, enhanced or

prolonged wintertime conditions actually act to suppress dust storms, all else being equal. Studies

of the relationship between modern interannual variability and atmospheric circulation also bear

out this relationship. Ding et al. (2005) find that dust outbreak frequency in Asia has a significant

negative correlation with the strength of the Siberian High in spring. Other studies (e.g., Qian et
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al., 2004; Zhou et al., 2004; Kurosaki and Mikami, 2004) can also be interpreted as supporting this

relationship.

In comparison to winter, climatological conditions are quite different in the other three seasons. the

Siberian High is weak in spring and fall and absent in summer (Figure 7), and so the atmosphere

is less stable to vertical displacement during those seasons than in winter. Also the upper-level

jet stream is south of the plateau in winter whereas during spring, summer, and fall, it is north

of the plateau (not shown). This has two consequences for atmospheric dynamics during spring,

summer, and fall: firstly, the reduction in vertical stability of the atmosphere means that upper-

level waves propagating on the jet stream can more easily interact with the surface to produce

cyclone development; secondly, the northward location of the jet stream is also conducive to lee

cyclogenesis - the atmospheric flow over and past the topography stretches vertical columns of air,

and imparts a curvature to the circulation that tends to favor cyclonic development (e.g., Han et

al., 1995; Davis, 1996; Hoskins and Hodges, 2002).

Off the east coast of Asia, the contrasting thermal inertia between continent and ocean produces

strong wintertime temperature gradients, and the resulting baroclinicity does produce frequent

coastal cyclogenesis in winter. However, despite these temperature gradients maximizing in winter,

nearly twice as many storms are generated in spring as in winter (Figure 6). It is an interesting

speculation therefore that the springtime peak in Asian lee cyclogenesis may play a role in the

relative minimum of storminess in the Pacific in midwinter (e.g., Nakamura, 1992; Chang et al.,

2002).

The other prerequisite for dust storms are strong meridional temperature gradients. In winter the

whole continent is cold and the band of strong temperature gradients lies to the south of the desert
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regions (Figure 7). In spring a reservoir of cold air still exists in the north, but the sun has begun

to warm the land in the lower midlatitudes. This leads to the large climatological temperature

gradients necessary for generating intense cold fronts. By summer however, even the high latitudes

have warmed up, and the meridional temperature gradients are consequently weakened. Fall tem-

peratures looks quite a lot like spring although there are some subtle, but apparently important

differences. In fall the location of the coldest air is displaced eastward compared to spring, and

eastward of the major dust generating regions (Figure 7b,d). A significant reason for this is that

the annual cycle in air temperature in northwestern Siberia (the source region of the cold air surges

in Figure 5) is influenced by the sea ice extent in the Barents Sea. The sea ice feels the thermal

inertia of the ocean mixed layer, and it reaches its maximum extent in spring, and its minimum

extent in fall. Consequently the seasonal cycles in snow cover and cold temperatures in Siberia are

skewed towards spring (Figure 7).

There appear to be several contributing reasons why the frequency of dust storms in fall is so

much less than in spring (Figure 2). The difference in climatological temperatures (Figure 7b,d)

already mentioned is one reason; a second is the approximately 50% less-frequent occurrence of

cyclogenesis in fall, shown in Figure 6. This latter observation is consistent with the fact that the

Siberian High is significantly stronger in fall than it is in spring (Figure 7). Other factors during

the fall are that the monsoonal precipitation is skewed towards late summer (Araguas-Araguas et

al., 1998) producing soil moisture (e.g., Mintz and Serafini, 1992) that inhibits dust lofting, and

also vegetation that, relatedly, also persists into fall (e.g., Yu et al., 2004). Vegetation plays an

important role in anchoring dust on the ground (e.g., Tegen and Fung, 1994; Mahowald et al.,

1999). It is hard to estimate the relative importance of these different factors without analyzing a

detailed model of dust lofting, but together they are sufficient to suppress fall dust storms. Laurent
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et al. (2005) attempt to look at the various factors and tentatively conclude that the frequency of

wind gusts is the dominant control in the modern climate.

3 Dust storms in climate models

In seeking to reconcile variations in paleo-proxy records with the climate changes that gave rise

to them, global climate models are the only tools capable of a self-consistent accounting of all the

contributing factors. A necessary (but not sufficient) cause for confidence in the modeled climate

changes is that the model has an adequate representation of the weather events that give rise to the

proxy record. I have described the meteorological conditions for the windstorms that generate dust

outbreaks: strong cold fronts and lee cyclogenesis. In both cases, the relatively coarse resolution of

climate models is a serious issue. Global climate models do not represent the scale of cold fronts

(∼10 km resolution would be necessary compared to the 100s of kms that are typical in climate

models), and so they do not properly resolve the dynamics giving rise to the wind gusts. Secondly,

the model resolution may not be adequate to capture the process of lee cyclogenesis. Of course these

two issues center only on the model’s ability to represent the lofting of the dust into the air, and are

arguably only the minimum requisites for the successful simulation of dust outbreaks by climate

models. The transport, deposition, and possible re-entrainment of the dust are also important

factors in the climate signal left in the loess record, and are discussed further in Section 4.

I examine one state-of-the-art climate model, the CCSM3 (Collins et al., 2006), for which daily

model output was available. Model simulations for both modern and last glacial maximum climates

have been performed, and have already been used to simulate the dust cycle (Mahowald et al., 2006).

I evaluate the modeled 850 mb temperature over Asia, both for the mean and the high frequency
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variability, as a function of season. The model output is compared to NCEP-NCAR reanalysis.

The purpose is to address the model’s ability to reproduce the cold air surges from Siberia. In

terms of getting the dust outbreaks right, this perhaps sets the lowest bar for the model since, as

already noted, wind gusts occurring during the passage of cold fronts are not captured because of

the coarse model resolution and are not, in any case, available from daily mean model output.

Figure 8 shows that the CCSM modern simulation does a good job reproducing the seasonal cycle in

mean temperature in the reanalysis. The biggest discrepancy is over Tibet, presumably due to the

interpolation of the model output down to the 850 mb pressure level over high topography. The daily

model output was high-pass filtered using a sixth-order high-pass Butterworth filter to emphasize

variability on 1-5 day timescales. Figure 9 plots the standard deviation of this high-frequency

variability for NCEP-NCAR reanalysis and for the CCSM modern simulation. The CCSM model

is clearly deficient in this aspect of the modern simulation. The temperature variability is much

stronger than in the reanalysis, by about a factor of two, on average. It is also clear that there are

some major discrepancies in the seasonal cycle. Figure 10 compares temperature variability from

station observations, filtered in the same way as the model output, for station observations around

(45 oN, 90 oE). All of the station data show a springtime peak in temperature variability. The

NCEP-NCAR reanalysis reproduces the magnitude of the temperature variability in this region,

but has a secondary fall peak that is larger than that at the surface stations, except possibly

Baytik Shan (45.37 oN, 90.53 oE). Figure 10 also clearly shows the temperature variability in the

CCSM modern simulation is too large, and peaks in late summer instead of spring. The last

glacial maximum CCSM simulation has temperature variability whose overall magnitude is similar

to that in the modern simulation, but has an increase in winter variance and a reduction in summer

variance. However, given the model’s failure to reproduce the observed magnitude and phasing of
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the seasonal cycle, the changes suggested for the last glacial maximum should probably be treated

skeptically.

A similar set of analyses for the 850 mb winds was also made (not shown). The mean winds were in

good agreement with the reanalysis but the high-frequency variability was again too large, and with

a different seasonal cycle. All these calculations suggest that this particular model has difficulty

in simulating the meterology of Asian dust storms. Excessive high-frequency variability appears to

be a general characteristic in midlatitudes in the CCSM3 (Li, 2007), and so is not directly related

to its relatively coarse resolution of T42 (about 3o by 3o). These results are for just one climate

model and it would clearly be useful to analyze the whole suite of climate models available, with

a particular focus on higher-resolution models. However, in relation to paleoclimate dust studies,

these results emphasize the challenge in modeling even one component of the weather responsible

for dust outbreaks in the modern climate. Inferences from the loess record about the cause of past

climate changes can be made only cautiously.

4 Summary and discussion

In the modern climate, dust outbreaks in Asia arise because of a particular set of circumstances

that prevail in springtime. Frequent cyclogenesis events in the lee of the Mongolian Altai combine

with strong meridional temperature gradients to produce cold air surges from Siberia. These surges

interact with the complex regional orography to produce intense windstorms at the leading edge of

this air mass. It is during these windstorms that dust is lofted and entrained into the atmosphere.

The windstorms are conditioned on two factors: strong temperature gradients and lee cyclogene-

sis. In winter, lee cyclogenesis is suppressed by both the strength of the Siberian High, and the
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displacement of the subtropical jet stream to south of the Tibetan plateau. In summer, strong

temperature gradients do not exist because the whole continent has warmed. In fall, the relative

absence of dust appears to be due to subtle differences from spring (a slightly stronger Siberian

High, slightly warmer temperatures) reducing the occurrence of windstorms, although soil moisture

and vegetation that anchors dust to the ground remain possible contributing influences.

This paper has focused on the meteorological factors involved in the generation of dust outbreaks

in eastern Asia. This is a minimum, but by no means complete, part of the climate signal reflected

in the loess deposits. The loess deposits are also influenced by the processes governing the strength

and extent of dust source regions, and the transport, deposition and possible re-entrainment of

the loess. It is to be expected that these factors vary as a function of mean climate state. Dust

modeling studies differ about the importance of changes in dust-source area during glacial climates:

Mahowald et al. (1999) conclude that the records of dustiness can only be explained by significant

changes in dust-source area; using a different model Werner et al. (2001) conclude that changes in

circulation and precipitation alone could be sufficient. I have also not tried to address the causes

of variations in magnetic susceptibility, which are argued to reflect changes in soil chemistry, and

interpreted as an indicator of the intensity of the eastern Asian summer monsoon and sedimentation

rate. (e.g., An et al., 1991; Liu and Ding, 1999; Porter, 2001).

Contrary to the usual paleoclimate interpretation, it is actually the breakdown of the Siberian

High in spring that permits and promotes the windstorms that produce dust. This relationship

is also borne out in observations of interannual variability of dust outbreaks, which are negatively

correlated with interannual variability in the Siberian High (Ding et al., 2005). All else being

equal, the modern record of dust outbreaks strongly suggests that enhanced dust flux ought to

be interpreted as prolonged or more intense springtime conditions rather than prolonged or more

14



intense wintertime conditions.

It is interesting to speculate what past changes in climate might be consistent with the enhancement

of dust flux over the Loess Plateau. The modern record suggests that the presence of cold air at

high latitudes, and in particular over western Siberia, is important. In glacial climates the presence

of permanent ice sheets there would have provided a year-round reservoir of cold air as a source

for the cold air surges, which together with lee cyclogensis in spring, summer, and fall (Figure 6)

might permit dust outbreaks extending over a greater fraction of the year. It might also be possible

that with colder summers, a reduction in rainfall and vegetation cover allows for dust outbreaks

to occur in the fall. Over the longer term geological record, the gradual cooling of global climate

during the Miocene coincides with the well-established aridification of central Asia and the onset of

loess deposition. It has been suggested here that the sea ice maximum in spring sets the seasonal

cycle of the temperature over western Siberia from which the cold surges originate. Preliminary

analyses for the present climate do suggest that springs with enhanced temperature variance in

central Asia are associated with increased sea-ice in the Barents Sea (Roe et al., 2004). Perhaps it

is also possible that onset of winter sea-ice during the Miocene played a role in the onset of dust

generation, transport, and deposition.

The above ideas are unsubstantiated speculations, and it is clear that the meteorology giving rise to

dust is complicated and sensitive to small changes in any one of a number of atmospheric variables,

a conclusion supported by the high degree of interannual variability of dust outbreaks in the modern

climate (e.g, Parungo, 1994; Ding et al., 2005). In addition to the climate sensitivities, paleo-records

are also subject to uncertainties about dust source strength and area, transport pathways, and the

mechanisms of deposition and re-entrainment. All of these extra factors add uncertainty to climate

changes inferred from loess records. For example, it has been estimated that recent anthropogenic
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desiccation of Owens Lake in California east of the Sierra Nevada, with an active emitting area of

just 90 km2, created the largest single dust source in the United States, with annual dust production

of between 900,000 and 8,000,000 tons (Gill and Gillette, 1991). This illustrates a critical sensitivity

of emissions to transient changes in dust sources that may themselves be a function of climate. The

multiple uncertainties about controls on dust production and transport are warnings flags about the

confidence with which the cause of past changes in dust flux can be confidently known. From the

paleo-record, it may be possible only to make some broad generalizations about dust as a function

of mean climate state. Unique interpretations of the actual climate mechanisms responsible may

not be attainable.

Climate models offer potentially useful tools to study the relative importance of different mecha-

nisms influencing the loess record. A prerequisite for their use is that they reflect the meteorology

of dust outbreaks (in addition to the transport and deposition of dust), or at least correctly cap-

ture the large-scale controls. For dust outbreaks the dynamics of cold front gusts and downslope

windstorms are important but occur at scales too small for climate models to capture. The one cli-

mate model examined in this study also failed to get the large-scale controls right. High-frequency

variance in low-level winds and temperatures was a factor of two too large, and the phasing of the

seasonal cycle was wrong. These are tough targets for GCMs to meet even in the current climate,

but without demonstrated skill for the present there can be little confidence in their output under

the dramatically different climate of, say, the last glacial maximum.

The paleo-loess record can be regarded as an exemplar of a general issue in the interpretation of

paleoclimate records, particularly when the proxy reflects rare weather events. It highlights the

importance of looking at individual case studies and interannual variability in modern observations

in order to understand the meteorological and climatological controls on that weather event. It is
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only by careful analysis of modern observations that there is some hope of establishing the proper

target for climate models, and that a level of confidence can be established as to how effectively the

climate history entangled within the paleo-proxy record can be teased out. Paleoclimate studies are

often motivated under the mantra that ‘the past is the key to the future’. However most important

for understanding what paleo-proxy records actually reflect, and in the spirit of Hutton’s original

approach, it is equally true that ‘the present is the key to the past’.
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5 Figures

Figure 1. Desert and desertified areas in eastern Asia. Taken from Laurent et al. (2005).

Figure 2. Taken from Kurosaki and Mikami (2003). Monthly dust outbreak frequency (bars)

and strong wind frequency (cricles) from Jan. 1993 to Jun. 2002 (white) and the same from Jan.

2000 to Jun. 2002 (black). The frequency of dust outbreaks is defined as the percentage of the

number of dust outbreaks reported to the total number of observations within a given period at

each observatory and/or given region. Similarly, the frequency of strong winds (hereafter, strong

wind frequency) is defined as the percentage of the number of strong winds to the total number of

observations.

Figure 3. Selected daily surface station data from Qitai in Xinjiang province, China (44.01N

89.56E), during the month of April, 2001. (a) Steep drops in visibility indicate periods of dust

outbreaks. Asterisks denote days on which dust was reported (WMO codes 07, 08, and 09); (b)

Daily-average surface temperature shows that the dust outbreaks occurred during times of cooling

temperatures (i.e., during the passage of a cold front); and (c) maximum sustained (two minute

average) wind speed (m s−1). The strong sustained winds and wind gusts are responsible for lofting

and transporting the dust.

Figure 4. 850 mb (i.e., ∼1 km elevation) temperatures from NCEP-NCAR reanalysis on days of

major dust outbreaks, selected from those reported by Zhou and Zhang (2003) for the last fifty
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years. The top panel shows the March-April-May mean climatology. All events show strong in-

cursions of cold air over central Asia during major dust storms. Where the 850 mb surface lies

beneath the surface elevation, the field has been interpolated down into the the topography via

standard algorithms (e.g., Kalnay et al., 1996). Since the vertical structure of the fields changes

quite slowly the patterns would look very similar at other levels. The green line shows the 3 km

elevation contour from the NCEP-NCAR reanalysis grid.

Figure 5. Case studies of two dust outbreaks in April, 2001. Figures show 500 mb (∼5.5 km

elevation) geopotential heights (contour interval 100 m) and 850 mb ( sim1 km elevation) tem-

peratures from NCEP-NCAR reanalysis over the 5 days leading up to the main dust storm events

recored at Qitai (see Figure 3), whose location is indicated by the pink dot. Note both events show

development of wave-like feature in the circulation at mid-levels in the toposphere, drawing cold

air from western Siberia down across central Asia over the course of several days.

Figure 6. Number of cyclogenetic events (×10−2) per 2.5o quadrangle per month for (a) DJF,

(b) MAM, (c) JJA, and (d) SON for the period 1958-87. Modified from Chen et al. (1991). Note

the relative dearth of storms in winter, the slight springtime maximum, and the presence of storms

throughout the summer and fall. Contour interval is 3.

Figure 7. Climatological 850 mb temperatures and mean sea level pressure (contour interval 4

mb) from NCEP-NCAR reanalyses, by season. See Figure 4 for more details. In winter the Siberian

High is strong and the region of strong temperature gradients is displaced south of the dust source

regions. In summer the entire continent has warmed up. Note also that the strength of the Siberian
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High in fall is significantly greater than in spring. Temperatures in northwest Siberia are also a

little cooler in spring compared to fall.

Figure 8. 850 mb temperatures, by season, from the CCSM climate model. Apart from a problem

interpolating down to 850 mb over the plateau, a comparison with Figure 7, shows the model is in

good general agreement with the reanalysis.

Figure 9. left panels, high frequency variability in 850 mb temperatures in the NCEP-NCAR

reanalyses, by season. The reanalysis output was filtered with a sixth order high-pass Butterworth

filter to emphasize variability on 1-5 day timescales. The figures show the standard deviation of

this variability; right panels, the same, but for the CCSM model output for the modern climate.

The CCSM model does a poor job of representing the seasonal cycle - it overestimates the variance

by about a factor of two, and gets the seasonal cycle wrong.

Figure 10. Comparison between seasonal cycles in daily temperature variability in the NCEP-

NCAR reanalysis, the CCSM model simulations and station observations near 45N, 90E. Analysis

method as for Figure 9. Most stations (thin lines) show a springtime peak in temperature variability.

The reanalysis (thick, solid line) does a fair job with the amplitude of the seasonal cycle although

there is a larger secondary peak in fall than for most stations. The CCSM modern (thick, dashed

line) and last glacial maximum (thick, dash-dotted line) simulations show variance that is much

higher than observed. The CCSM modern simulation does not have the same seasonal cycle as the

observations. The last glacial maximum simulation has a large drop in variance in summer and

a large increase in winter, compared to the modern simulation. (Qitai, 44.01N 89.56E; Karamay,

45.50N 84.85E; Shisanjianfang 43.21N 91.73E; and Baytik Shan 45.36N, 90.53E)
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Figure 1: Desert and desertified areas in eastern Asia. Taken from Laurent et al. (2005).
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potential region of dust outbreaks when the maximum
frequency is high. Thus, Figure 2 depicts the distribution
of potential dust outbreak regions in East Asia. We repre-
sented the analysis region in this study by a box in Figure 2
(33.5 N–52.0 N, 88.5 E–131.5 E); this box indicates the
north, east, and south boundaries of the potential dust
outbreak region in East Asia. The Taklimakan Desert, west
of the analysis region, was excluded from the analysis
because steep mountains surround this desert. The observa-
tory, which possesses dust outbreak potential, was also
defined as having a maximum monthly dust outbreak
frequency of over 4% (i.e., about one day for one month).
Thus, a total of 105 potential dust outbreak observatories
are included within the analysis region. The data at these
observatories were used in the statistical analyses in sections
4.1, 4.2, and 4.3.

4. Results

4.1. Seasonal Variations

[9] The white bar chart and line graph with white circles
in Figure 3 indicate the frequencies of monthly dust out-

breaks and strong winds from Jan. 1993 to Jun. 2002. Dust
outbreaks occur most frequently in spring. This result agrees
with previous studies [Littmann, 1991; Parungo et al.,
1994]. Two-thirds of the dust outbreaks can be observed
in March, April, and May. In contrast, dust outbreaks are the
least frequent in summer (July, August, and September).
Strong winds also occur most frequently in spring and least
frequently in summer. A weak secondary peak of strong
wind frequency occurs around November; however, the dust
outbreak frequency has no peak in this season.

4.2. Year-to-Year Variation

[10] The dust outbreak frequency in spring has been
greater in the last three years (2000–2002) than in the
preceding seven years (1993–1999) (Figure 4). The last
three years (2000–2002) will hereafter be referred to as the
dust-frequent years (DFY), and the previous seven years
(1993–1999) as the dust-normal years (DNY). The year-to-
year variation of Kosa events (Figure 1) is similar to that of
dust outbreaks in East Asia (Figure 4); i.e., Kosa is
frequently observed in DFY. The strong wind frequency is
also high in DFY and low in DNY.
[11] A clear positive correlation was found between dust

outbreak frequencies and strong wind frequencies in year-
to-year variations. However, the month of April was an
exception in both 1995 and 1998. The strong wind frequency
was as high as in DFY in 1995; nevertheless, the dust

Figure 1. Total number of days for which Kosa (i.e.,
yellow sand) events were observed at 123 observatories for
each year in Japan. For example, the total number of Kosa
days is five for any day when Kosa is observed at five
observatories in one day. The result of 2002 includes data
until May 12 of that year. (From a report for the press by
Japan Meteorological Agency; http://www.kishou.go.jp/
press/0204/15a/kosa.pdf).

Figure 2. Maximum monthly dust outbreak frequency
during Jan. 1993 to Jun. 2002. The box indicates the analysis
region. Thick solid lines indicate country boundaries. Thin
solid lines indicate 1,500 m and 3,000 m topography
contours. Gray shading indicates the sea and lakes.

Figure 3. Monthly dust outbreak frequency and strong
wind frequency from Jan. 1993 to Jun. 2002 (white bars and
white circles) and the same from Jan. 2000 to Jun. 2002
(black bars and black dots).

Figure 4. Monthly dust outbreak frequency and strong
wind frequency from Jan. 1993 to Jun. 2002. The black bar
chart and line graph with black dots indicate dust outbreak
frequency and strong wind frequency.

ASC 2 - 2 KUROSAKI AND MIKAMI: RECENT FREQUENT DUST EVENTS

Figure 2: Taken from Kurosaki and Mikami (2003). Monthly dust outbreak frequency

(bars) and strong wind frequency (cricles) from Jan. 1993 to Jun. 2002 (white) and the

same from Jan. 2000 to Jun. 2002 (black). The frequency of dust outbreaks is defined as

the percentage of the number of dust outbreaks reported to the total number of observations

within a given period at each observatory and/or given region. Similarly, the frequency of

strong winds (hereafter, strong wind frequency) is defined as the percentage of the number

of strong winds to the total number of observations.
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Figure 3: Selected daily surface station data from Qitai in Xinjiang province, China (44.01N

89.56E), during the month of April, 2001. (a) Steep drops in visibility indicate periods of

dust outbreaks. Asterisks denote days on which dust was reported (WMO codes 07, 08, and

09); (b) Daily-average surface temperature shows that the dust outbreaks occurred during

times of cooling temperatures (i.e., during the passage of a cold front); and (c) maximum

sustained (two minute average) wind speed (m s−1). The strong sustained winds and wind

gusts are responsible for lofting and transporting the dust.
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Figure 4: 850 mb (i.e., ∼1 km elevation) temperatures from NCEP-NCAR reanalysis on

days of major dust outbreaks, selected from those reported by Zhou and Zhang (2003) for

the last fifty years. The top panel shows the March-April-May mean climatology. All events

show strong incursions of cold air over central Asia during major dust storms. Where the

850 mb surface lies beneath the surface elevation, the field has been interpolated down into

the the topography via standard algorithms (e.g., Kalnay et al., 1996). Since the vertical

structure of the fields changes quite slowly the patterns would look very similar at other

levels. The green line shows the 3 km elevation contour from the NCEP-NCAR reanalysis

grid.

30



Figure 5: Case studies of two dust outbreaks in April, 2001. Figures show 500 mb (∼5.5 km

elevation) geopotential heights (contour interval 100 m) and 850 mb ( sim1 km elevation)

temperatures from NCEP-NCAR reanalysis over the 5 days leading up to the main dust

storm events recored at Qitai (see Figure 3), whose location is indicated by the pink dot.

Note both events show development of wave-like feature in the circulation at mid-levels in

the toposphere, drawing cold air from western Siberia down across central Asia over the

course of several days.
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Figure 6: Number of cyclogenetic events (×10−2) per 2.5o quadrangle per month for (a)

DJF, (b) MAM, (c) JJA, and (d) SON for the period 1958-87. Modified from Chen et al.

(1991). Note the relative dearth of storms in winter, the slight springtime maximum, and

the presence of storms throughout the summer and fall. Contour interval is 3.
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Figure 7: Climatological 850 mb temperatures and mean sea level pressure (contour interval

4 mb) from NCEP-NCAR reanalyses, by season. See Figure 4 for more details. In winter

the Siberian High is strong and the region of strong temperature gradients is displaced

south of the dust source regions. In summer the entire continent has warmed up. Note

also that the strength of the Siberian High in fall is significantly greater than in spring.

Temperatures in northwest Siberia are also a little cooler in spring compared to fall.
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Figure 8: 850 mb temperatures, by season, from the CCSM climate model. Apart from a

problem interpolating down to 850 mb over the plateau, a comparison with Figure 7, shows

the model is in good general agreement with the reanalysis.
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Figure 9: left panels, high frequency variability in 850 mb temperatures in the NCEP-

NCAR reanalyses, by season. The reanalysis output was filtered with a sixth order high-

pass Butterworth filter to emphasize variability on 1-5 day timescales. The figures show

the standard deviation of this variability; right panels, the same, but for the CCSM model

output for the modern climate. The CCSM model does a poor job of representing the

seasonal cycle - it overestimates the variance by about a factor of two, and gets the seasonal

cycle wrong.
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Figure 10: Comparison between seasonal cycles in daily temperature variability in the

NCEP-NCAR reanalysis, the CCSM model simulations and station observations near 45N,

90E. Analysis method as for Figure 9. Most stations (thin lines) show a springtime peak in

temperature variability. The reanalysis (thick, solid line) does a fair job with the amplitude

of the seasonal cycle although there is a larger secondary peak in fall than for most stations.

The CCSM modern (thick, dashed line) and last glacial maximum (thick, dash-dotted

line) simulations show variance that is much higher than observed. The CCSM modern

simulation does not have the same seasonal cycle as the observations. The last glacial

maximum simulation has a large drop in variance in summer and a large increase in winter,

compared to the modern simulation. (Qitai, 44.01N 89.56E; Karamay, 45.50N 84.85E;

Shisanjianfang 43.21N 91.73E; and Baytik Shan 45.36N, 90.53E)
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