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ABSTRACT

Characterizing the relationship between large-scale atmospheric circulation patterns and the

shape of the daily precipitation distribution is fundamental to understanding how dynamical

changes are manifest in the hydrological cycle, and it is also relevant to issues such as nat-

ural hazard mitigation and reservoir management. We pursue this general question, using

ENSO variability and the American West as a case study. When considering the full range

of wintertime precipitation, we find that, consistent with conventional wisdom, mean precip-

itation intensity is enhanced during El Niño relative to La Niña in the southwest, and vice

versa in the northwest. We further attribute this change in mean to a shift in the distribu-

tion of daily precipitation towards more intense daily rainfall rates. In addition, we observe

fundamental changes in the shape of the precipitation distributions, independent of shifts

in the mean. Surprisingly, for intense precipitation, La Nina winters actually demonstrate

a significant increase in intensity (but not frequency) across the southwest. A main lesson

from this analysis is that, in response to ENSO variability, changes in extreme events can

be significantly different from changes in the mean. In some instances, even the sign of the

change is reversed. This result suggests that patterns of large-scale variability have an effect

on the precipitation distribution that is nuanced, and cannot be regarded as simply causing

a shift in climatic zones. It also raises interesting questions concerning how best to establish

confidence in climate predictions.
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1. Introduction

Understanding interannual and future changes in the hydrological cycle is of great impor-

tance to society. This is true both for planning the management of water resources and also

for the mitigation of natural hazards, such as floods, landslides, and avalanches. In the case

of water resources, it may be seasonal mean precipitation that is most important, while in

the case of hazards, it is typically the occurrence of heavy or extremely heavy precipitation

that matters. Depending on the application, the complete statistical distribution of precip-

itation frequency and intensity is of interest. The shape of the precipitation distribution is

also a function of climate state, changing throughout the annual cycle as wintertime drizzle

transitions to springtime showers and then to summertime storms. How are such factors

manifest in the observational record of interannual variability and in model projections of

climate change?

Understanding the dynamic and thermodynamic controls on precipitation remains a chal-

lenge in climate science. General circulation models (GCM) struggle to successfully simulate

the observed distribution of precipitation intensity (Sun et al. 2006; Wilcox and Donner

2007; Allan and Soden 2007) or the satellite-derived precipitation response to sea surface

temperature (SST) variability (Wentz et al. 2007; Allan and Soden 2008). Convective pa-

rameterization in models certainly plays a role in the discrepancy between observed and

simulated precipitation. For example, Wilcox and Donner (2007) show that the choice of

model convective parameterization has a larger impact on the statistics of heavy precipitation

than a 2K warming. Nor are the statistics of stratiform precipitation adequately resolved

(e.g Zhou et al. 2007). In light of these challenges, it is clearly worthwhile to characterize
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the observed precipitation distributions as carefully as possible, in order to evaluate the skill

of models used to predict future changes.

Recent studies have made impressive strides in understanding expected changes in global

mean and extreme precipitation in a warmer climate, largely based on considerations of

moisture availability and the global energy budget. While atmospheric water vapor content

increases by close to 7% per degree of global mean temperature increase (i.e. 7% K−1) in

accordance with Clausius-Clapeyron scaling and assuming constant relative humidity, cou-

pled climate models predict an increase in global mean precipitation of approximately 2%

K−1, consistent with energy balance constraints (Allen and Ingram 2002). The intensity of

extreme precipitation events is expected to be broadly constrained by moisture availability

and hence increase faster than global mean precipitation (Trenberth et al. 2003). However

several studies argue that increases in intense precipitation should not scale exactly with

Clausius-Clapeyron due to the additional effects of latent heat release, changes in circula-

tion strength, and the difference between local mean temperature and the temperature at

which precipitation extremes occur, although observations remain debated (Pall et al. 2007;

O’Gorman and Schneider 2009; Lorenz and DeWeaver 2007). For example, in a series of

idealized GCM experiments O’Gorman and Schneider (2009) show that fractional changes

in precipitation extremes are less than changes in water vapor content, except at highest

latitudes where the local temperature effect dominates.

Progress has also been made in understanding the regional patterns of predicted precip-

itation changes. Strengthening of tropospheric moisture fluxes, as predicted in a warmer

climate, is expected to lead to an enhancement of the geographic distribution of evaporation

and precipitation (Held and Soden 2006; Lorenz and DeWeaver 2007). In other words, wet
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regions are expected to become wetter, and dry regions drier. This pattern is simulated in

the Intergovernmental Panel of Climate Change (IPCC) Fourth Assessment Report multi-

model ensemble projections, which indicate a general increase in mean precipitation in the

tropics and mid-latitudes and a decrease in the already arid subtropics. Furthermore, climate

models suggest that a wetter climate for a given region is one in which heavy precipitation is

more intense and more frequent (Sun et al. 2007; Kharin et al. 2007). This is consistent with

the theoretical argument for a shift in the precipitation distribution towards extremes under

global warming. Given the predicted response of global and regional mean precipitation

to warming, and the suggestion that increases in precipitation are accomplished by intense

precipitation events, there remains a need to consider the full range of expected changes in

the statistical precipitation distribution.

Impacts pertaining to these projected precipitation changes are likely to be far-reaching

and significant. As discussed above, percent increases in intense precipitation per degree

warming are generally expected to be larger than percent increases in the mean. More-

over all evidence, from observations to simulations, suggests that warmer climates lead to

more intense precipitation events even in regions where the total annual precipitation is

reduced slightly, and with the possibility for correspondingly larger increases in intensity

where the total amount of precipitation also increases (Solomon et al. 2007). This is mean-

ingful since extremes in precipitation arguably matter more than the mean for erosion and

natural hazards, such as floods and landslides. From a geological and land surface processes

perspective, interesting questions thus arise concerning the sensitivity of erosion to changes

in precipitation intensity.

We seek to understand how dynamical changes in the hydrological cycle affect the statisti-
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cal distribution of precipitation. A natural starting point, and the inspiration for the present

study, is to understand how large-scale atmospheric circulation patterns control the shape

of the daily precipitation distribution in the modern record. An observational analysis also

provides a target for model evaluation. Our approach is to consider the natural variability of

the precipitation response in the American West attributed to El Niño Southern Oscillation

(ENSO). ENSO is generally considered to be the dominant pattern of global interannual

climate variability. It is associated with hemisphere-wide precipitation and temperature

anomalies that are consistent with a meridional shift in the position of the midlatitude tro-

pospheric jet and Pacific storm track. Wintertime precipitation anomalies associated with

ENSO have been extensively discussed in the scientific literature, and numerous studies have

demonstrated enhanced seasonal precipitation in the southwest and suppressed precipitation

in the northwest during El Niño events, and vice versa during La Niña (e.g. Mo and Higgins

1998; Schonher and Nicholson 1989; Kahya and Dracup 1994; Dettinger et al. 1998). Hence

it is clear that ENSO in the American West is a natural setting for probing further into the

dynamical controls on large-scale precipitation patterns.

Wintertime daily statistics follow the general theme of seasonal precipitation, with en-

hanced daily precipitation expected in the southwest during El Niño and the northwest

during La Niña. The importance of understanding the shape of the statistical distribution

of precipitation, and the manner by which changes in mean translate into probabilities of

extreme events, has been noted in other studies, but with emphasis ultimately placed on

the higher percentiles rather than the full distribution. For example, Higgins et al. (2007,

2008) demonstrate wintertime increases in the mean frequency of daily precipitation and in

the amount of accumulated precipitation from heavy events (greater than 90th percentile) in
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the southwest during El Niño and the northwest during La Niña. In addition, Cayan et al.

(1999) find increases during El Niño in the frequency of heavy precipitation days (greater

than 50th and 90th percentile) and an amplified and lagged streamflow response in the

southwest, and likewise during La Niña in the northwest. Similar patterns in precipitation

are also observed for the frequency of greater then 75th percentile events, for ENSO relative

to the climatological mean (Gershunov and Barnett 1998; Gershunov 1998).

An alternate to comparing the means and extremes of precipitation is to evaluate the

shape of the full statistical distribution of precipitation. For example, Sardeshmukh et al.

(2000) apply statistical tests to identify regions (globally) of changes in the shape of the sea-

sonal mean precipitation distribution for ENSO winters, using GCM ensembles and monthly

observations. The authors also identify regions of changes in the probability of extreme

values, and evaluate whether these changes are due to shifts in the mean or changes in

shape. They find that along the Pacific Coast of North America, changes in the shape of

seasonal precipitation indeed occur during ENSO events, and in turn affect the probability

of extreme events. By evaluating the shape of daily wintertime precipitation during ENSO

events, our study effectively fills the gap between a global shape analysis of the seasonal

distribution of precipitation (e.g. Sardeshmukh et al. 2000), and a consideration of only the

higher percentile ranks for regional daily precipitation (e.g. Cayan et al. 1999). In the same

vein, a recent study by Becker et al. (2009) analyzes the effect of ENSO on the parameters

of a theoretical distribution function fit to daily rainfall.

ENSO is also of interest because its associated precipitation anomaly pattern in the

American West straddles the dry subtropical zone of the Desert Southwest and wet midlati-

tude zone of the Pacific Northwest. These zones are projected to have different precipitation
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responses under global warming scenarios, hence defining a border region of high sensitivity

to a changing climate. It is also important to remember that the response of ENSO itself

to a warmer climate is by no means clear. Whereas mean tropical Pacific SST are expected

to shift towards more ‘El Niño-like’ conditions in a warmer climate (with no agreement on

change in interannual variability or event amplitude) (van Oldenborgh et al. 2005; Solomon

et al. 2007), the zonal mean atmospheric circulation response to global warming suggests

a weakening and expansion of the Hadley Cell and poleward shift of the midlatitude jet,

consistent with La Niña, rather than El Niño, processes (Lu et al. 2008; Chen et al. 2008).

Given these apparently conflicting responses, we emphasize that we do not consider ENSO

to be an analog for the future climate. Rather we are concerned with how a rearrangement

of the patterns of heating and circulation in the atmosphere influences the statistical dis-

tribution of precipitation, and we recognize that understanding these processes may have

implications for projections of future climate. In addition, while any of the many identified

modes of atmospheric circulation could be used to investigate the natural variability of the

precipitation distribution, we choose ENSO in the western U.S. as a natural case study with

large societal impacts. However the same analysis framework can be readily applied to any

mode of natural variability.

2. Data, Methods, and the Meaning of ‘Wetter’

We use the CPC Unified Rain Gauge Database (URD) of gridded (0.25◦ x 0.25◦) daily

station data for 1948-1998 (Higgins et al. 2000) to evaluate wintertime (defined here as

November through March, or NDJFM) precipitation in the American West as a function
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of ENSO. On a typical day the URD includes ∼13,000-15,000 reporting stations across the

United States. We choose the URD because it represents the best-available source of daily,

high-resolution, multidecadal, and station-based precipitation data for the region. Statistical

significance of differences in the mean and shape of daily precipitation distributions are

evaluated for El Niño relative to La Niña winters. Strong ENSO events are selected based

on whether the wintertime mean SST anomaly within the Niño 3.4 region in the tropical

Pacific (5◦N-5◦S, 170-120◦W) (Trenberth 1997) exceeds a threshold of ±1K (Table 1). No

statistical comparison is made to the mean state or neutral ENSO years, although inspection

of mean-state ENSO conditions (not shown) confirms that the precipitation distribution lies

between that of strong El Niño and La Niña winters.

Figure 1 shows the wintertime-mean daily precipitation time series averaged over the

southwest (SW) and northwest (NW) regions (30.5-40◦N, 110-126.25◦W and 40-49.5◦N, 110-

126.25◦W, respectively). These regions are selected because they exhibit coherent spatial

precipitation patterns during ENSO events. In addition, we halved the region to consider

only precipitation west of 116◦W and found results to be consistent. Several features are

striking from this figure. First, according to the Student’s t statistic, there is no trend in

the precipitation time series at the 5% significance level in either region (allowing for only a

5% chance of incorrectly rejecting the null hypothesis). We note that, for the whole of the

United States and over the full twentieth century, other studies have identified significant

trends (Groisman et al. 2004). However the important point here is that any trend at the

regional level in our data is swamped by the interannual variability. Hence we are not

concerned with a sampling bias with respect to the selected ENSO years, which might arise

from the predominance of strong La Niñas in the early half of the record and strong El
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Niños in the latter half. Secondly, the time series serves as an excellent reminder that the

ENSO phenomenon only explains some of the precipitation variability in the western U.S.

Not all wet years are strong ENSO years, and there exists quite a bit of scatter in the

amount of precipitation during strong ENSO events. However overall we see that in the SW

the wintertime mean precipitation averaged over El Niño winters is greater than during La

Niña winters, whereas in the NW the wintertime mean precipitation is greater during La

Niña, consistent with the canonical picture of wintertime ENSO precipitation impacts in the

American West. This is confirmed in statistical tests presented in the next section.

It is also necessary to carefully define what is meant by ‘wetter’ or ‘drier’, as there are

several different ways of characterizing changes in precipitation. Figure 2a shows the density

distribution of daily precipitation averaged over the NW, and Figure 2b shows the same

information represented as a cumulative distribution. Broadly speaking we might imagine

a shift in the mean of the statistical distribution of precipitation (the mean is indicated by

the dashed lines in Figure 2), or a change in the shape of the distribution. In addition,

changes in the precipitation distribution may be described by a change in the frequency of

precipitation events or in the amount of rain per event. In other words, a wetter climate may

be one in which precipitation either occurs more often or is more intense, or a combination

of both. When considering the latter, we weight the frequency of events by the amount of

precipitation per event, such that the distribution, when plotted, gives the fraction of total

rain as a function of daily rainfall rate (Figure 2c). The histogram of the weighted case

de-emphasizes the drizzle and emphasizes the heavy precipitation events in the tail of the

distribution (compare Figures 2b and c).

It is easy to appreciate that for a small (or even no) shift in the mean precipitation,
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there is the possibility for a large change in the contribution from intense events to the

precipitation total. For example, previous studies have used the two-parameter gamma dis-

tribution to model daily precipitation amounts and have demonstrated that modest changes

in mean precipitation tend to be accomplished by a larger proportion derived from heavy

rainfall events (Groisman et al. 1999; Wilby and Wigley 2002; Becker et al. 2009). This is

attributed to changes in the scale parameter, which essentially controls the spread of the

gamma distribution. We choose to characterize the general shape of the daily precipitation

data, rather than fitting it to the parameters of a theoretical function such as the gamma

distribution. While the gamma function is an efficient descriptor and facilitates comparison

of distributions, the value of our approach is that it allows for complete characterization of

changes in the distribution and, in addition, avoids possibly underfitting the data with a

prescribed mathematical function.

3. Analysis

Distributions of daily precipitation during El Niño and La Niña winters are evaluated

and compared using two standard statistical tests, the two-sample t test for mean and

the nonparametric Kolmogorov-Smirnov (K-S) test for distribution shape (Massey 1951;

Stephens 1979). Statistical significance is established by allowing for only a 5% chance of

incorrectly rejecting the null hypothesis (α = 0.05). The null hypothesis states that the

means or shapes of El Niño and La Niña precipitation are equal for the t test and K-S

test, respectively. The t test in principle involves two assumptions: normality and data

independence. Daily precipitation, however, has a highly skewed distribution and exhibits
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large day-to-day correlation. As elegantly shown by Boneau (1960), the t test is functionally

robust to non-Gaussian distributions, particularly for large sample sizes. This is true even for

the extreme case of the exponential distribution. The second assumption of serial correlation

we correct for, as described in Sections a1 and b1.

In regards to the K-S test, it is noteworthy that - because the distributions are cumu-

lative - once a significant separation occurs anywhere between the distributions, then the

null hypothesis is rejected and the distributions are statistically different, regardless of the

behavior elsewhere within the distributions. The K-S test searches for the maximum in the

vertical separation between two cumulative distributions, f(x) and g(x), given by

Dks = max(|f(x)− g(x)|), (1)

and determines based on this spread whether the data are from the same or different distribu-

tions. In the analyses that follow, we evaluate both the spatial patterns of mean precipitation

as a function of ENSO (Section a), as well as the shape of the precipitation distributions

in regional averages (Section b). Absolute changes in extreme precipitation are discussed in

Section c. In particular, we focus on the southwest (SW) and the northwest (NW) regions

of the American West, as defined in Section 2.

a. Change in mean

We begin by evaluating how mean daily wintertime precipitation varies with ENSO phase,

and address the canonical picture of ENSO precipitation impacts (e.g. Mo and Higgins 1998;
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Schonher and Nicholson 1989; Kahya and Dracup 1994; Dettinger et al. 1998). Figure 3

shows mean daily wintertime precipitation when raining, or mean daily intensity, in the

study region for El Niño minus La Niña events. We hereafter refer to El Niño as warm

ENSO events and La Niña as cold ENSO events. Across the western U.S. we find that, when

raining, the maximum difference between daily rainfall rates in warm and cold ENSO events

is more than 3 mm/day (Figure 3a). As in the regional average (Figure 1), this variability is

sufficiently large with respect to observed or projected trends that we can be confident our

analysis is not polluted by sampling biases. In addition, there is an increase in mean daily

precipitation intensity in the SW during warm events (up to 87%), in the NW during cold

events (up to 56%), and a striking nodal line in the differenced precipitation field at roughly

40◦N, indicating a zone of little-to-no change in mean intensity associated with ENSO (Figure

3b). Overall there is a clear difference in mean daily precipitation intensity during warm

and cold ENSO events, and these features are generally consistent with previous studies of

ENSO precipitation impacts as discussed in Section 1.

We now evaluate the statistical significance of these observations, and in Section b iden-

tify how changes in mean are accomplished by changes in the frequency and intensity of

precipitation. A discussion of how degrees of freedom were estimated in attributing sig-

nificance follows at the end of this section. Applying the t test to each grid cell reveals

a widespread pattern of statistically-significant increases in mean (i.e. averaged across all

days) daily intensity during warm (cold) events across the SW (NW) relative to cold (warm)

events at the 5% significance level (Figure 4), confirming the canonical picture of ENSO

precipitation impacts in the mean. In addition, applying a more rigorous significance level

(e.g. 1%) has only a minimal effect on the spatial pattern of statistical significance. This
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increase in mean daily precipitation intensity appears to be a robust result and is supported

by several lines of evidence: It is evident in the spatial maps of observed precipitation differ-

ences and confirmed by t tests applied at the grid cell level. It is also supported by t tests

applied to the NW and SW aggregate data (Section c), providing a consistent story in all

cases tested.

There are also interesting regional variations in the effect of ENSO phase on precipitation.

In particular we consider a range of precipitation thresholds in order to understand the

frequency signal as a function of daily rainfall rate. For example, we find that the frequency

of drizzle in the NW is relatively unaffected by cold ENSO events. Figure 3c shows that

changes in the fractional number of rainy days are small across much of the NW (less than

10%), whereas in considering only precipitation ≥5 mm/day, there is a much more obvious

increase in the fractional number of rainy days during warm events in the SW and cold

events in the NW, particularly along the coast (Figure 3d). This suggests that in the NW

the total number of rainy days is dominated by drizzle and is less sensitive to ENSO phase,

consistent with the finding by Cayan et al. (1999) that the fractional increase in precipitation

frequency associated with ENSO is larger in the SW than the NW. Applying the t test, after

correcting for spatial and temporal correlation, to the frequency of precipitation events (not

shown) reveals an increase in the mean number of rainy days during warm events in the

SW and in the NW at the 5% significance level. This is evidenced in Figure 3c by the

northward of 40◦N extension of increases in warm event precipitation frequency. If even a

1 mm/day precipitation threshold is imposed (ignoring all precipitation <1 mm/day, and

thereby removing the drizzle effect) we do indeed see a significant increase in the number

of rainy days in the NW during cold events. This result holds true for every precipitation
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threshold greater than and including 1 mm/day.

1) Adjustment for temporal correlation of data

Serial correlation arises as an issue when applying the t test to climatological data,

and we detour briefly to discuss this here. The conventional t test assumes statistically

independent data, which is generally not the case for daily precipitation. The effect of serial

correlation is that the test will too frequently return a significant difference in means where

no difference exists. In other words, the actual significance level is higher than the specified

significance level. This behavior is occasionally referred to as liberal, to differentiate it from

a conservative test. A standard approach is to compute the effective degrees of freedom,

sometimes referred to as the equivalent sample size in time series analysis. The ensuing

reduction in degrees of freedom accounts for the information loss due to serial correlation.

We apply this technique throughout our analysis, after von Storch and Zwiers (1999), by

calculating the decorrelation time and effective degrees of freedom at each grid cell from

wintertime climatology. On average, this amounts to a 10% reduction in the degrees of

freedom. In Section c we extend this treatment to account for effective spatial degrees of

freedom as well.

b. Change in shape

We now focus in more detail on how the shape of the precipitation distribution changes

as a function of ENSO phase. We apply the K-S test to identify differences in the shape of

the distributions between warm and cold events, both in terms of the fraction of rainy days
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and the fraction of total rain amount. These analyses illuminate how the changes in mean

precipitation shown in the previous section are accomplished by changes in the frequency

or intensity of precipitation. In order to evaluate fractional differences in the amount of

precipitation, we weight the distributions by the daily rainfall rate as discussed in Section 2.

Figures 5a and b show the spatial patterns of the K-S test applied to the distributions

of the fraction of rainy days as a function of daily rainfall rate. The geographic regions

of statistical significance correspond well with those identified in the previous section for

changes in mean daily intensity according to the t test (Figure 4). However when the K-S

test is applied to the weighted distributions representing the fraction of total rain, there

are notable differences. In particular, the pattern of significance becomes less regionally-

concentrated and more diffuse. Figure 5c shows that a shift in the weighted precipitation

distribution towards more intense daily rainfall rates during warm events is still largely

confined to the SW. In contrast, in Figure 5d we see that a significant shift in the weighted

distribution towards more intense precipitation occurs across an extended region of the

western U.S. during cold events. Recalling the cumulative nature of the test, it is important

to emphasize that these maps are best interpreted as providing a geographic overview of

where the shapes of the distributions differ, rather than indicating the relative importance

of cold or warm events for a particular rainfall rate. Interestingly, Figure 5d hints at an

influence of cold-event weather systems that extends farther south than expected. This

topic is addressed in detail in Feldl and Roe (2010).

The coherent spatial patterns evident in Figure 3 lead us to consider daily regional

averages of the precipitation data, where raining. Given this approach, the area over which

we average may change depending on the number of rainy grid cells. The regional averages
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consist of 1120 cold-event rainy days and 1209 warm-event rainy days. We first focus on

the cumulative distributions of daily precipitation frequency for warm and cold events. The

nature of the K-S test effectively normalizes the distributions, and ensures that the influence

of ENSO on the frequency of precipitation is not obscured by the differing amounts of total

seasonal precipitation in our two regions. Figures 6a and b present a comparison of the

cumulative distributions of regionally-averaged daily precipitation frequency for warm and

cold events in the SW and NW, respectively. We conclude from the K-S test that the shapes

of the distributions are indeed statistically different, and moreover we find a significant

increase in the fraction of total rainy days that are heavy rainy days (hereafter, heavy rainy

day fraction) during warm (cold) relative to cold (warm) events in the SW (NW). This result

is apparent from a shift in the warm event distribution towards more intense daily rainfall

rates in the SW, and likewise for cold events NW.

This and subsequent results are based on interpretation of the cumulative distributions

and hence a brief discussion is warranted. Focusing on Figure 6a for the SW, a shift in

the warm event distribution towards the right implies that for every daily rainfall rate, the

warm event distribution has achieved a smaller percentile of its total rainy days than the cold

event distribution, which means a larger fraction is available to occur at more intense daily

rainfall rates (i.e., imagine taking a vertical slice through the distributions). This shift is

accompanied by an increase in mean daily precipitation intensity (as indicated by the dashed

lines) during warm events in the SW, once again corroborating the robustness of our t test

result in the mean on both a grid cell level (Figure 4) and in the regional mean. An alternate

perspective follows that for every percentile rank, the warm event distribution occurs at a

higher daily rainfall rate than the cold event distribution (imagine a horizontal slice). For
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example, 10% of all rainy days (greater than 90th percentile) occur at regionally-averaged

rainfall rates of greater than 6.3 mm/day for warm events and greater than 4.9 mm/day

for cold events in the SW. Similarly in the NW (Figure 6b), 10% of all rainy days occur

at regionally-averaged rainfall rates of greater than 6.2 mm/day for warm events and 7.0

mm/day for cold events.

In these plots the gray shading centered on the warm-event distribution represents the

95% confidence limits (100 × (1 − α), where α is the significance level). If the cold-event

distribution lies anywhere outside this gray envelope, then we may conclude, with 95%

confidence, that the distributions are statistically different by the K-S test. Due to the

integrative nature of cumulative distributions, which must converge at the upper and lower

limits, the distributions are required to be contained within the 95% confidence interval at

the highest and lowest rainfall rates. In other words, it is important not to construe that

the distributions differ only at the rainfall rates where a separation is observed, and in fact

differences may occur in the tails. Separation of the cumulative distributions at any given

daily rainfall rate simply means that differences across all rainfall rates up to that point

have accumulated to become statistically significant. Values of the K-S test statistic Dks

are given in Table 2. Recall the test statistic indicates the maximum separation between

the cumulative distributions and is the metric for distinguishing whether the warm and cold

event precipitation distributions are statistically different.

Turning now to the weighted case, a statistically-significant change in shape due to an

increase in the fraction of total rain contributed by heavy precipitation (hereafter, heavy

rain fraction) is observed during warm relative to cold events in the SW (Figure 6c), and

during cold relative to warm events in the NW (Figure 6d). Hence when considering the full
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distributions, we find both increases in the frequency and intensity of heavy precipitation

in the SW during warm events and in the NW during cold events. This result is consistent

with previous work (e.g. Higgins et al. 2007; Cayan et al. 1999). In addition, a recent study

by Becker et al. (2009) finds that the Southwest is scale-dominated during warm events

(referring to the scale parameter of the gamma distribution), which the authors interpret as

an increase in the relative frequency of intense precipitation days.

Figure 6c further hints at an intriguing result: At the very highest rainfall rates in the

SW (greater than 99th percentile), the heavy rain fraction from cold events actually exceeds

that from warm events. That is, the daily rainfall rates for the top 1% of precipitation

are higher during La Niña than during El Niño in the SW. Note that this is in line with

our expectation that shifts in the cold-event distribution towards more intense daily rainfall

rates are widespread across much of the American West and not limited to the NW (Figure

5d). We cannot conclude as to the significance of this result directly from the cumulative

distributions, and instead we apply a different technique in Section c to search for significance

in the tail of the distributions.

The comparison of the distributions for frequency and intensity presented in this section

supports our earlier conclusion that the precipitation response is nuanced and dependent

on the particular question being asked. In what follows, we explore this idea further by

identifying changes in the shape of the precipitation distributions independent of shifts in

the mean. Namely, we normalize the x axis for each distribution such that a value of one

equals the mean daily rainfall rate (and a value of two is twice the mean daily rainfall

rate). One benefit of this approach is that it allows one to compare the ‘flashiness’ of the

distribution, or in other words the probability of extreme excursions far from the mean.
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Figure 7 shows the adjusted cumulative distributions of warm and cold event precipitation

in the SW and NW. We find no significant change in the frequency distribution of rainy days

relative to the mean in the NW (Figure 7b). This is not surprising given our earlier result

showing that the frequency of drizzle in the NW is relatively unaffected by ENSO state and

tends to damp the frequency response in the full distribution. In the SW there is a small

but significant departure between the distributions, suggesting (1) an increase in the fraction

of rainy days that are moderate rainy days during warm events and (2) an increase in the

heavy rainy day fraction (greater than 87th percentile) during cold events (Figure 7a). This

redistribution of the number of rainy days is indicated by the intersection of the distributions

near twice the mean daily rainfall rate.

Figures 7c and d allow us to characterize the ‘flashiness’ of the precipitation, or how

closely the distribution clusters near the mean. We see a statistically-significant increase

in the fraction of total rain contributed by above-mean events during cold (warm) relative

to warm (cold) events in the SW (NW). In other words, during warm events in the SW

the distribution is steeper at moderate rainfall rates, indicating that a larger portion of the

precipitation distribution clusters near the mean daily regional-mean intensity. In contrast,

precipitation is flashier (has a lower kurtosis) during cold events in the SW. Combining

the results for the SW from Figures 6c and 7c, we find an increase for warm events in the

heavy rain fraction (in an absolute, mm/day sense), but also an increase in the kurtosis, or

a narrowing of the distribution.

Several additional points are striking and worth emphasizing. In the SW we see significant

changes in both the frequency of events (albeit small) and intensity of precipitation relative

to the mean, whereas in the NW only changes in intensity are significant. In other words,
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there do not appear to be significant changes in the relative distribution of the number of

rainy days between warm and cold events in the NW. Secondly, these results demonstrate a

fundamental difference in the shape of the weighted distributions independent of shifts in the

mean during warm and cold events. The differences between warm and cold events cannot

simply be explained by a shift in the mean daily intensity, but rather an actual redistribution

of the relative proportions of regional-mean precipitation is necessary.

Finally in all cases we see that the increases in the fraction of total rain contributed by

the heaviest precipitation occurs during cold events rather than warm events (Figures 6c-d

and 7c-d). This is true for both geographic regions. However we emphasize that this result is

specific to the intensity of heavy precipitation only. When the the full range of precipitation

is considered, as is clear from several figures, mean El Nino precipitation still exceeds La

Nina in the SW. In the next section, we further explore the intense cold-event precipitation

signal inferred from the tails of the distributions.

c. Change in extremes

Cumulative distributions of total rainfall amount suggest that the intensity for the top

1% of precipitation events is enhanced during La Niña relative to El Niño in the SW re-

gional average. This finding is particularly relevant to weather extremes and their associated

impacts. What strategies can we use to evaluate the tails of the distributions statistically?

Our preferred approach is to consider only the individual heavy precipitation events, and

to search for the local rainfall threshold above which cold events demonstrate an increased

mean according to the t test. This picks out the intense but possibly isolated events, and
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does not necessarily speak to a regional picture. On the other hand, it is relevant to local

and damaging severe-weather phenomena such as landslides and flash floods.

As a brief aside, a second approach is to focus on all precipitation concurrent with

heavy events, in essence, applying a regional-mean threshold. With this approach we find

that, as suggested by the tail of the cumulative distributions in Figure 6c, for regional-

mean thresholds of at least 11 mm/day cold events demonstrate an increase in mean daily

regional-mean intensity in the SW. Recalling from Section b that the average is taken over

rainy grid cells only, these regional means represent extraordinarily high rainfall rates, and

only a handful of events exist for regional-mean precipitation ≥11 mm/day. As such, there

is not enough statistical power to declare significance. Hence we conclude that this result is

more of a curiosity than a convincing climatic signal.

Returning to the local threshold analysis, we construct an aggregate data set for each

threshold, without prior averaging. Thus each precipitation event represents a single time

and place. The t test is then applied to search for differences in mean daily rainfall rate

for the thresholded data. A drawback of the above-mentioned regional threshold analysis is

that, because it is the averaged data (again, only over rainy cells) to which the threshold is

applied, one rainy grid cell on an otherwise dry day will have as much of an effect as one

thousand rainy grid cells during a widespread precipitation event. This effect is particularly

troublesome at high thresholds where precipitation is sparse. In contrast, in using the local

threshold and aggregate data set, a widespread dry day will contribute few rain events, and

a widespread rainy day will contribute many events. Precipitation is in essence weighted by

the spatial extent of the storm, simply by nature of the aggregate. An additional benefit of

this technique is that we retain more data, hence increasing the statistical power of the test
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to obtain significant results. For instance, for no threshold, we have over two million pooled

precipitation events across the SW region, decreasing to 1671 for a 70 mm/day threshold.

Likewise for the NW, over four million, decreasing to 3159.

Figure 8 shows the difference in mean precipitation rate as a function of threshold for

the SW and NW. A discussion of how degrees of freedom were estimated for the regional

aggregate follows at the end of this section. As must be the case from prior analysis, for

no threshold applied (i.e. 0 mm/day threshold), mean daily precipitation is significantly

increased during warm relative to cold ENSO events in the SW, and vice versa in the NW.

In addition, for all thresholds considered the NW conforms to the expected picture, with cold-

event precipitation increased over warm-event precipitation (Figure 8a). However beyond

thresholds of 6 mm/day, the spread between means is not large enough to be assessed as

significant. In stark contrast is the signal in the SW (Figure 8b). As the threshold is

raised to even 1 mm/day, the result that warm-event precipitation is greater than cold-event

precipitation falls below the 95% confidence level. And for thresholds exceeding about 20

mm/day, we instead find that mean precipitation rates during cold events actually exceed

those during warm events. The mean of the aggregate precipitation given a 20 mm/day

threshold represents the ∼99th percentile rainfall rate. The synoptic conditions associated

with these intense local precipitation events in the SW are explored in Feldl and Roe (2010).

In summary, in both regions precipitation follows the canonical picture of increases in the

SW during El Niño and in the NW during La Niña when considering the full range of

precipitation, whereas for intense precipitation, rainfall rates in the SW are in fact higher

during La Niña.

We emphasize that our result is an intensity signal not a frequency signal, and there
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is no significant increase in the number of rainy days during cold events in the SW for

precipitation ≥20 mm/day (see appendix for further detail). Rather we find that while heavy

precipitation in the SW is more intense during cold events, it is more frequent during warm

events. In other words our results suggest that, for the SW, La Niña winters experience

more locally intense precipitation (relevant to landslide hazards), whereas El Niño winters

experience enhanced precipitation across the entire region and more frequent heavy rains

(relevant to reservoir management). Localized regions of significant increases in mean daily

intensity during warm ENSO events persist over the Southern Coast Ranges of California

for thresholded precipitation but do not survive spatial averaging.

1) Adjustment for spatial correlation of data

As discussed earlier, applying the t test to daily precipitation, which is correlated in both

time and space, requires an adjustment accounting for data dependencies. In Figure 8 we

use a bracketing approach to constrain the upper and lower limits on the effective degrees

of freedom, and translate these bounds into the acceptable range of spread allowed by the

t test. Note that as the threshold is raised to include increasingly extreme events, we lose

observations and hence degrees of freedom (as indicated by the widening of the confidence

intervals). Likewise, we also lose degrees of freedom by correcting for serial correlation. The

lower bound (dashed line in Figure 8) is obtained by assuming perfect spatial correlation, or

in other words, one degree of freedom per day, and then reducing this further to account for

temporal correlation following our method in Section a. The upper bound (gray envelope)

is obtained by calculating the effective spatial degrees of freedom from the precipitation
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data (N∗ef ∼ 3.5) after Bretherton et al. (1999) - which explicitly considers non-Gaussian

precipitation data - and multiplying this by our lower bound. Due to assumptions inherent

in the adjustment, this may still represent an overestimate of the actual degrees of freedom.

4. Discussion and Conclusions

In this study we characterized how the daily distribution of precipitation is linked to a

major mode of climate variability. Using ENSO as a case study for changes in midlatitude

circulation patterns, we evaluated 50 years of wintertime precipitation during El Niño and

La Niña winters in the American West, based on a comprehensive, high-resolution, station-

based dataset. Our major results are as follows:

- Increase in mean daily precipitation intensity is confirmed across the SW during warm

ENSO events and across the NW during cold ENSO events.

- Change in mean is accomplished by a shift in the distributions of daily precipitation

frequency and amount towards more intense daily rainfall rates.

- Frequency of drizzle (<1 mm/day) in the NW is largely unaffected by ENSO state.

- Fundamental changes in the shape of the precipitation distributions are observed, in-

dependent of shifts in the mean.

- For heavy precipitation, cold events show an increase in mean daily intensity across

the SW.
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For all cases applied to the full range of daily rainfall rates in the SW, we find that

both local and regional-mean precipitation is larger during warm than cold ENSO events.

However in considering extreme precipitation, cold ENSO events demonstrate a significant

increase in mean daily intensity when aggregated over the entire region. In map view, the

spatial pattern of intense cold-event precipitation is diffuse (Figure 9a). We find that approx-

imately half of all the grid cells that experience intense (≥20 mm/day) precipitation in the

SW region show an increase in mean cold-event precipitation over warm-event precipitation.

However less than 1% of the intensely-precipitating grid cells in the SW have sufficient num-

ber of temporally-uncorrelated observations to distinguish statistically between warm and

cold ENSO means. This speaks to our earlier point, and provides motivation for using the

regional aggregate. As the threshold is raised to consider increasingly extreme precipitation,

we lose degrees of freedom and statistical power. As a result, the statistics are severely ham-

pered at the grid cell level, whereas in the regional aggregate we retain adequate information

to address the extremes statistically.

The richness of the spatial pattern emphasizes one of the strengths of our analysis, that by

considering both regional and local effects, we gain a deeper understanding of how patterns

of climate variability affect precipitation. The diffuse pattern of intense precipitation is

expected due to the well-known low degree of spatial correlation in precipitation, compared to

other climatological variables. In addition, we have already remarked on the high variability

evidenced in the time series of regionally-averaged ENSO precipitation (Figure 1). Not only

is it true that not all strong warm-event years are wet in the SW, but conversely we see

that some strong cold events are in fact very wet in the SW. Finally, we also note that

the western U.S. is characterized by complex topography, including two major north-south
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oriented mountain ranges. Local and orographic effects are expected to lead to enhanced

spatial variability across the region.

We find that distinct perspectives are gained by evaluating both the spatial patterns

and regional aggregates of precipitation differences. Figure 9 shows the spatial extent of

wintertime differences in the intensity and frequency of heavy precipitation that comprise

the regional-mean picture. That intense cold-event precipitation matters on a local scale

across the SW is indicated by the diffuse spatial pattern, combined with the significant in-

crease for the region as a whole. From composite analysis of several climate variables, these

intense cold-event precipitation days in the southwest arise from the presence of a persis-

tent offshore trough, and the simultaneous emplacement of a strong source of subtropical

water vapor (Feldl and Roe 2010). While La Niña winters experience more locally intense

precipitation in the SW, El Niño winters experience enhanced regional-mean precipitation

and more frequent heavy rains (Figure 9b). Thus depending on the impact of interest, be

it landslides or reservoir management, either El Nino or La Nina conditions may have the

stronger signal. In addition, we can identify from Figure 9 areas of southern California that

are particularly sensitive to El Niño in that they exhibit increased intensity and frequency

of heavy precipitation during warm events.

Our goal in this study was to investigate the link between large-scale atmospheric cir-

culation and daily precipitation statistics, in the context of our two climatic regions, the

northwest and southwest of the western U.S. While for most metrics the choice of the 40◦N

demarcation between climate zones is a good approximation to the patterns of precipitation

variability, there are two notable exceptions. First, that El Niño weather influences the NW

in the frequency of drizzle (<1 mm/day) (Figure 3c), and secondly that La Niña weather
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influences the SW in the intensity of heavy precipitation (≥20 mm/day) (Figure 9a). We

speculate that this observation may represent a difference in character between the north-

ward extension of drizzly warm-front preciptiation and the southward extension of intense

cold-front precipitation. The main lesson here is that we cannot simply describe the response

to changing patterns of circulation as a shift in the climatic zones, but that a more nuanced

view is necessary, at least when considering the full spectrum of precipitation.

An abiding theme of this analysis is that extreme local events do not have to behave

according to the regional mean. This point illustrates important subtleties in regional-scale

climate predictability. It is interesting to consider whether the details of the daily precipita-

tion distribution provide a benchmark for establishing confidence in climate prediction (e.g.

Allan and Soden 2008). It seems a natural requirement that models have skill in reproduc-

ing observed precipitation statistics, particularly for impacts-related projections of extreme

precipitation. More broadly speaking, how well do we have to understand the SST and

circulation forcings in order to have skill in predicting the precipitation response for a given

climate, be it past, modern, or future? Some studies have employed statistical-dynamical

methods towards this end (e.g. Gershunov and Cayan 2003). That we have found important

differences depending on whether one considers frequency, intensity, or extremes suggests

that it may be worthwhile to revisit the shape of the precipitation distribution for other

circulation regimes - in addition to the midlatitude and largely maritime scenario presented

here. Such considerations are highly relevant to the weather experienced under a changing

climate.
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APPENDIX

Changes in intensity for thresholded precipitation

Mathematically, the relationship between frequency and intensity of thresholded precip-

itation is represented by

ppi≥p∗ =

∑∞
i>i∗ nipi∑∞
i>i∗ ni

,

in which the mean intensity p over a threshold p∗ is given by the total amount of precipitation

divided by the total number of aggregate precipitation events over that threshold. For an

increase in intensity (p) to occur, there must be a redistribution of precipitation events

(ni) towards more intense rainfall rates (pi), such that the total amount of precipitation is

increased.

Figure A1a shows the aggregate number of rainy days as a function of precipitation

threshold for the southwest (the northwest results are shown in the inset figure). The fre-

quency of rainy days is always greater during warm than cold ENSO events, although at high

thresholds the frequency distributions converge. When the data are plotted as a fraction of

rainy days (Figure A1b) the curves intersect, such that at high thresholds (≥40 mm/day)

cold events contribute a larger fraction of rainy days relative to warm events. Strikingly,

this redistribution does not occur in the northwest (as seen in the inset). In other words,

the increase in the intensity of heavy precipitation during cold ENSO events requires that,

at some higher threshold, the proportion of rainy days that occur at intense rainfall rates
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must also increase. Figure A1 is a clear way of showing the redistribution of precipitation

events that explains the results in Section 3c.
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Table 1. List of warm and cold event years (corresponding to the January months) during
1950-2008. The year is considered warm (cold) when the NDJFM average of the Niño 3.4
SST anomaly index exceeds 1K (-1K). Recall that the precipitation dataset only extends
through 1998.

warm (El Niño) cold (La Niña)
1958 1950
1966 1956
1973 1971
1983 1974
1987 1976
1992 1985
1995 1989
1998 1999
2003 2000

- 2008
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Table 2. Kolmogorov-Smirnov test statistic Dks indicating the maximum separation be-
tween warm and cold event distributions (Figure 6). In parentheses is the test statistic for
precipitation distributions relative to mean daily precipitation intensity (Figure 7). The
critical value of the test statistic required to accept the null hypothesis is 0.0506 at the 5%
significance level.

Southwest Northwest
Fraction of rainy days 0.116 (0.076) 0.095 (0.035)
Fraction of total rain 0.099 (0.128) 0.103 (0.070)
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Fig. 1. Wintertime-mean daily precipitation time series averaged over the southwest (SW)
and northwest (NW) regions. Filled diamonds indicate strong La Niña events, open cir-
cles indicate strong El Niño events. Dashed (dotted) lines represent the mean wintertime
precipitation for all El Niño (La Niña) winters averaged over each region.
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Fig. 2. Climatological wintertime-mean daily precipitation in the NW during NDJFM (40-
49.5◦N, 110-126.25◦W), presented as a (a) density distribution of regionally-averaged precip-
itation, (b) cumulative distribution of fraction of rainy days, and (c) cumulative distribution
of fraction of total rain amount, all as a function of rainfall rate.
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Fig. 3. Wintertime (NDJFM) precipitation differences for warm minus cold ENSO events.
(a) Difference in mean daily precipitation when raining, in mm. (b) Percent difference in
mean daily precipitation when raining. (c) Percent difference in number of rainy days. (d)
Percent difference in number of rainy days with precipitation ≥5 mm/day.
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Fig. 4. Results of t test showing regions of statistically-significant change in mean daily
precipitation intensity during ENSO events, after correcting for temporal correlation at each
grid cell. Shading indicates the p-value for the left-tail test. In other words, p = 0.95
represents an increase in intensity during warm (relative to cold) events at the 5% significance
level, and p = 0.05 represents an increase during cold (relative to warm) events, also at the
5% significance level. The significance level is the probability of incorrectly rejecting the null
hypothesis.
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Fig. 5. Results of K-S test applied to distributions of the fraction of rainy days (top) and the
fraction of total rain (bottom). The left panel shows regions of statistically-significant shifts
in the warm ENSO event distribution towards more intense daily rainfall rates, relative to
the cold event distribution. The right panel shows the same for cold relative to warm events.
Shading indicates the 5% significance level. At some grid cells, primarily in the SW, the K-S
test returns a significant result in both cases (compare c and d). This can only occur when
the cumulative distributions intersect in the middle of the distribution, meaning that warm
event precipitation significantly exceeds cold event precipitation at one point (f(x1) > g(x1)
in Equation 1), and vice versa at another (f(x2) < g(x2)).
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Fig. 6. Distributions of regional-mean precipitation for warm (solid) and cold (dashed) ENSO
events, including mean daily precipitation intensity (vertical lines) and 95% confidence limits
(gray envelope) for the K-S test. A shift in the distribution towards more intense daily
rainfall rates implies an increase in the fraction of rainy days or total rain contributed by
heavy precipitation. Test statistics are given in Table 2.
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Fig. 7. Normalized distributions of regionally-averaged precipitation for warm (solid) and
cold (dashed) ENSO events, and 95% confidence limits (gray envelope) for the K-S test.
Test statistics are given in Table 2. We normalize the x axis for each distribution such that
a value of one equals the mean daily rainfall rate (and a value of two is twice the mean daily
rainfall rate).
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Fig. 8. Mean daily aggregate rainfall rate for warm minus cold ENSO events as a function
of threshold for the NW (a) and SW (b). This aggregate reflects an integrative measure of
precipitation rates in the tail of the distributions beyond the specified threshold. We run t
tests on categories of daily rainfall rates, testing every precipitation threshold in increments
of 1 mm/day. The gray envelope indicates 95% confidence limits for the two-sample t test,
after correcting for spatial and temporal correlation. The dashed envelope represents our
most conservative estimate, assuming perfect spatial correlation. For thresholds greater than
∼20 mm/day, cold events show a significant increase in mean daily intensity relative to warm
events in the SW regional average.
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Fig. 9. Wintertime precipitation differences for warm minus cold ENSO events. (a) Percent
difference in mean daily precipitation intensity. (b) Percent difference in number of rainy
days. All precipitation events less than 20 mm/day per grid cell have been excluded. In
general, as the precipitation threshold is raised there are increasingly larger regions for which
no heavy precipitation is observed during ENSO. Thus we note that for precipitation ≥20
mm/day, the difference in mean daily intensity cannot be calculated for portions of the
western U.S. interior.
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Fig. A1. (a) Aggregate number of rainy days as a function of threshold for warm (solid) and
cold (dashed) ENSO events. (b) Same but for the fraction of rainy days.
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