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ABSTRACT

The theories of critical orogenic wedges and fluvial erosion are combined to 
explore the interactions between tectonics, erosion, and climate. A model framework 
is developed which allows the derivation of an exact analytical scaling relationship 
for how orogen width, height, and rock uplift rate vary as a function of accretionary 
flux and precipitation rate. Compared to a model with prescribed uplift rate, incorpo-
rating the tectonic response introduces a powerful negative feedback on the orogen, 
which strongly damps the system’s equilibrium response to changes in forcing. Fur-
thermore, for the most commonly assumed forms of the fluvial erosion law, the orogen 
is more sensitive to changes in the accretionary flux than in the precipitation rate. 
And while increases in accretionary flux and precipitation rate both cause an increase 
in exhumation rate, they have opposite tendencies on the orogen relief. Further analy-
sis shows that the pattern of rock uplift does not affect the scaling relationship and 
that it is only weakly dependent on the hillslope condition.
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1 INTRODUCTION

That the mountainous terrains on Earth are shaped by the 
triumvirate of climate, erosion, and tectonics is one of the central 
concepts of the earth sciences. At some level it is simply a truism: 
convergent plate boundaries lead to crustal thickening and drive 
rock uplift; a host of processes on the land surface (physical and 
chemical weathering, soil production, hillslope processes, fluvial 
and glacial erosion, etc.), all dependent to some degree on climate, 
act in combination to erode material from the landscape; and the 
local (and indeed global) climate is, in turn, partly controlled by 
the presence and form of the underlying terrain (Fig. 1). To state, 
however, that all three are related does not address the strength of 
the feedbacks, the details of the underlying mechanisms, or their 
relative importance in different climatic and tectonic settings.

A growing body of observational evidence has pointed to 
the connection between tectonics and erosion in, for example, 
the Southern Alps of New Zealand (e.g., Adams, 1980; Koons, 
1989), the Alps (e.g., Bernet et al., 2003, Anders et al., 2002), 
Taiwan (e.g., Suppe, 1980), the Andes (e.g., Montgomery et al., 
2001), the Cascades (e.g., Reiners et al., 2002, 2003) and the 
Olympics (e.g., Brandon et al., 1998) in Washington State, and 
the Himalayas (e.g., Finlayson et al., 2002). Taken together, 
such data suggest that at a fundamental level the basic pro-
cesses of crustal deformation are inextricable from the ero-
sional, and thus climatic, mechanisms driving exhumation 
(Beaumont et al., 2000).

As the understanding of each of the three components of 
the system has advanced, research has begun to investigate 
the coupling mechanisms and strengths of the interactions. 
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It is shown in Section 2 that this model framework yields 
a simple and exact analytical expression for the scaling rela-
tionship for the width of the orogen as a function of climate 
(i.e., the precipitation rate) and tectonics (i.e., the accretionary 
flux), which is dependent on the parameters in the fluvial ero-
sion law. After examining the sensitivity of the width to plau-
sible combinations of the parameters, further analysis shows 
the scaling relationship is remarkably robust to relaxation of 
the model assumptions. We argue that this is a major reason 
why integrations of a numerical coupled tectonic-surface pro-
cess model, presented in Stolar et al. (this volume), show close 
agreement with the scaling relationship derived here. We end 
with a discussion of other aspects of the system that have been 
omitted and what might be the consequences on the behavior 
of the system.

2. AN ANALYTICAL SOLUTION

The framework we use is quasi one-dimensional (Fig. 2). 
It represents only one side of a critical wedge orogen and is the 
simplest one which represents both fluvial erosion on a landscape 
and the tectonic response associated with critical wedge dynam-
ics. We consider the longitudinal profile of a major trunk river, 

A handful of modeling studies (e.g., Koons, 1989; Beaumount 
et al., 1992; Masek et al., 1994; Willett, 1999) have demon-
strated the effectiveness of the interactions by incorporating 
simple representations of orographic precipitation into coupled 
tectonic-surface process models. Willett (1999), for example, 
showed the tremendous potential for the direction of the oro-
graphic rain-shadow to determine the pattern of exhumation 
and stress within the orogen.

Another series of papers has investigated in more detail 
how the relief of orogens is affected by the dominant erosional 
process and climate feedbacks, focusing on fluvial erosion in 
longitudinal river profiles (e.g., Howard et al., 1994; Whipple 
et al., 1999; Whipple and Tucker, 1999; Tucker and Whipple, 
2002; Roe et al., 2002, 2003). However, these papers prescribe a 
fixed rock uplift rate over a fixed length and therefore omit any 
tectonic response to the modeled patterns of erosion. Without 
understanding the nature of this tectonic response, it is unclear 
whether the results reflect the true sensitivity of the real system.

This paper presents a steady-state analytical solution for 
a simple framework which represents the three components 
of the system explicitly. It is similar in spirit and form to that 
of Whipple and Meade (2004) and Hilley et al., (2004), but 
because of a different formulation reaches somewhat different 
conclusions. Such analytical solutions provide a conceptual 
understanding of the coupled system’s behavior, but also make 
important predictions that can be evaluated against observations 
or compared to more complete numerical models. The tectonic 
setting considered is that of a critical Coulomb wedge (Davis 
et al., 1983; Dahlen, 1984, 1990; Willett et al., 1993). The crust 
is assumed to behave as a plastic, frictional material. Driven by 
convergence and crustal accretion, surface slopes steepen until 
gravitational stress and basal traction are in balance while the 
crust is everywhere at its yield stress. The result is an orogen 
whose mean cross-sectional profile is wedge-shaped, maintain-
ing a critical taper angle and changing self-similarly in response 
to changes in tectonic and climate forcing. We apply a model of 
erosion to this critical orogen that assumes that fluvial processes 
dominate, except near the divide where hillslope failure—or 
channel-head processes—maintain a critical hillslope angle.

Figure 1. Schematic illustration of the 
process involved in interplay between 
climate, tectonics, and erosion (after 
Willett, 1999).

Figure 2. The model framework. The accretionary flux is distributed 
uniformly as rock uplift over the domain. Together the fluvial and hill-
slope relief equal the total relief which is constrained to maintain a 
critical taper angle.
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running from the foot of the orogen (at x = L) to a channel head 
(at x = x

c
). The river channel head is assumed to be connected 

to the drainage divide (at x = 0) by a hillslope which maintains 
a fixed critical slope, θ

c
. Since the orogen is a critical wedge, 

the mean topographic profile must follow a critical taper angle 
α

c
. This is the key to the coupling of the erosion and tectonics: 

the total relief (i.e., fluvial plus hillslope), R, divided by the half-
width, L, is constrained such that

	
R
L c

= tanα .	 (1)

Tectonic forcing is in the form of a steady accretionary flux, 
F, which is assumed to be distributed uniformly under the wedge 
(i.e., underplating, e.g., Dahlen and Barr, 1989; Willett et al., 
2001) so that in steady-state the local rock uplift is uniform and 
given by

	 U=F/L. 	 (2)

We assume that most of the orogenic wedge is dominated by 
a series of transverse rivers (i.e., oriented perpendicularly to the 
orogen divide). Erosion rate within the river channel, E, obeys a 
simple fluvial erosion law:

	 E KQ
dz
dx

m

n

=






,	 (3)

where Q(x) is the fluvial discharge (i.e., the streamflow), and  
dz/dx is the along-profile river channel slope. K is the erosivity, 
and m and n are exponents that depend on the physical process 
governing the erosion (e.g., Whipple and Tucker, 1999). Other 
functional forms for erosion laws have been postulated which, 
for example, include an incision threshold (e.g., Sklar and Diet-
rich, 1998; Snyder et al., 2003), or regard erosion as a transport-
limited process (Tucker and Whipple, 2002). Given the myriad 
processes acting to cause erosion in mountain rivers (e.g., Whip-
ple et al., 2000), the stream power law is probably best regarded 
as quasi-empirical, justified in part by the characteristic shape of 
most bedrock river channels, and only in part from basic physical 
principles. However, as elaborated in the Discussion, the funda-
mental nature of the feedback studied here is unlikely to change 
even if erosion operates via a different process. Given the tracta-
bility of using the stream power erosion law in this framework, 
and the current developmental status of alternative representa-
tions of fluvial erosion, the incorporation of a more complex ero-
sion law would be premature.

Such a model framework obviously makes some fairly 
restrictive simplifying assumptions. By construction, the modeled 
system has far fewer degrees of freedom by which to adjust than 
the real one has. First, we consider only one side of the wedge. 
The framework for a two-sided wedge can be constructed by 
apportioning the accretionary flux so that each side maintains its 
own critical taper (Whipple and Meade, 2004). Doing so does not 
affect the sensitivity of the width to changes in tectonic or climate 
forcing, provided that the erosivity is uniform. In seeking only 

steady-state solutions, the mass balance is between the accretion-
ary flux and the integrated erosional flux: we do not worry about 
material accreted into the root or an isostatic response, both of 
which will affect the temporal evolution of the system. Next, in 
Sections 3 and 4 the assumptions of spatially uniform rock uplift 
and the fixed hillslope condition are shown to have only a small 
impact on the solution’s sensitivity. A further factor relates to the 
quasi one-dimensional framework which effectively fixes the 
sinuosity of the major trunk rivers. We assume that the tributaries 
in the drainage network and the interfluve hillslopes somehow 
adjust so that the major ridge profiles complement the trunk river 
profiles in order to maintain a critical taper. That such adjust-
ments do in fact happen is supported to some extent by the obser-
vation that many orogens have a mean-elevation profile with an 
approximately constant slope (e.g., Davis et al., 1983). It is fur-
ther supported by results of integrations of a numerical model 
(Stolar et al., this volume) that represents some of these extra 
degrees of freedom, and which yields a width and uplift response 
in close agreement with that presented below.

The river profile governed by Equation (3) is assumed to 
be anchored to the foot of the wedge, such that z = 0 at x = 
L. As discharge decreases toward the divide the channel slope 
steepens. When this slope reaches a critical value, α

c
, we assume 

a transition from a fluvial regime governed by Equation (3) to 
a hillslope dominated regime, which maintains this critical 
slope. Letting x

c
 represent this transition point between erosion 

regimes, we can write

	
dz
dx

fluvial
c

= tanθ       at x = x
c
	 (4)

	
z z

x
c

c
c

0

0

−
−

= tanθ       for 0 < = x < x
c
,	 (5)

where z
c
 denotes the elevation of the profile at x

c
 (see Fig. 2).

Lastly, we need to specify river discharge as a function of 
position on the river. In building an analytical solution, we make 
the assumption that climatological precipitation rate, P, is uni-
form. This allows the discharge at a point, Q(x), to be specified 
as directly proportional to upstream drainage area, A. We can 
then take advantage of the empirical observation that A can be 
represented by an expression of the form A = k

a
xh (e.g., Hack, 

1957; Montgomery and Dietrich, 1992). Discharge is therefore 
given by
	 Q(x) = Pk

a
xh.	 (6)

Obviously precipitation is not uniform in mountainous 
regions, and moreover, it is generally a function of mountain 
width and relief. It has been shown that incorporating a precipi-
tation feedback can have a substantial impact on the modeled 
relief of mountain ranges (Roe et al., 2002; 2003). For now we 
treat it as a prescribed forcing, and we will return to this issue in 
Section 5 and in the Discussion. Together with an assumption of 
steady state, (1) to (6) form a closed set of equations which, for 
prescribed precipitation rate and accretionary flux (P and L), and 
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specified erosion law parameters (K, h, m, n), can be solved to 
obtain the orogen width, L.

In steady-state there must be a pointwise balance between 
rock uplift rate and the erosion rate. So from Equations (2), (3), 
and (6) we get: 

	
dz
dx

F
LK P k

x
m

a
m

n hm
n= ⋅









 ⋅

−1
1

.	 (7)

The above expression can be applied at the transition point, x
c
:

	
tanθ

c m
a
m

n

c

hm
n

F
LK P k

x= ⋅








 ⋅

−1
1

	 (8)

Next, the elevation of the transition point, z
c
, can be found by 

combining Equations (5) and (1):

	 z
c
 = Ltanα

c
 – x

c
tanθ

c
.	 (9)

A second expression for z
c
 can be derived by integrating 

Equation (7), subject to the lower boundary condition that z = 0 
at x = L:

	

z
F

LK P k
L x

c m
a
m

n hm
n

c

hm
n

hm
n

= ⋅








 ⋅ −



−

− −1 1
1

1 1

1 



≠

= ⋅








 ⋅

 for

ln

hm
n

z
F

LK P k
L x

c m
a
m

n

c

1

1
1

/(( ) ≠                 for
hm
n

1

		  (10)

For the case of hm/n ≠ 1, and setting the right hand sides of 
Equations (9) and (10)

1
 equal to each other gives:

F
LK P k

x

hm
n

L
xm

a
m

n
c

hm
n

c

h

⋅








 ⋅

−








− −
1

1

1
1 1

mm
n

c c c
L x−

















= −1 tan tanα θ 	(11)

Finally, on substitution from Equation (8) and rearranging:

	
1

1
1

1

−







−

















=
−

hm
n

L
x

c

hm
n

c

c

tan

tan

α
θ

LL
x

c







−1 	 (12)

For hm/n = 1 the equivalent expression is:

	 ln
L
x

L
x

c

c

c c







=







−

tan

tan

α
θ

1 	 (13)

Equations (12) and (13) are implicit equations in the variable  
L/x

c
. Therefore the solution can be found from the intersection of 

two curves plotting the left and right hand sides of the respective 
equations as a function of L/x

c
. The graphical solution for the 

case of hm/n ≠ 1 [Equation (12)] is shown in Figure 3. For α
c
 > 

θ
c
 (i.e., taper angle exceeding critical slope), the two curves do 

not intersect. For θ
c
 > α

c
 however, the curves intersect twice and 

there are therefore two values of L/x
c
 which satisfy the equations. 

Only one value is physically meaningful however, since by con-
struction x

c
 ≤ L. Denoting the acceptable value of L/x

c
 as λ, and 

substituting from Equation (8) gives the solution directly:

	 Kk L F P
a
m n

c
hm m hmtan θ λ  ⋅ ⋅ =+ −1 1  	 (14)

which applies for both the hm/n ≠ 1 and hm/n = 1 cases. Assum-
ing α

c
, θ

c
, K, and the erosion law exponents remain constant as F 

and P vary, we can write:

	  L F Phm
m
hm∝ +

−
+

1
1 1 	 (15)

This is an exact analytical scaling relationship for the model 
framework and approximations, and reflects the fundamental 
interplay between tectonics, orography, and climate (i.e., F, L, 
and P), mediated through critical wedge dynamics and fluvial 
erosion.

As is to be expected, L increases in response to an increase in 
accretionary flux, and L decreases for an increase in precipitation 
rate. Since maintaining a critical taper requires relief and width 
to co-vary, the scaling relationship for the total relief, R, is also 
given by Equation (15).

Taking log derivatives of Equation (15) shows how frac-
tional changes in L are related to fractional changes in F and L:

	
∆ =

+
∆ − ∆





L
L hm

F
F

m
P

P
1

1
	 (16)

Therefore, for all values of the discharge exponent m < 1 
[which most data and theoretical predictions call for (e.g., Whip-
ple et al., 2000)], the orogen width (and total relief) are more 
sensitive to accretionary flux than to precipitation rate.

Interestingly, the slope exponent n does not enter into Equa-
tion (16). This is because the integral of the slope along the  

Figure 3. Graphical solution to Equation (12). f
1
 and f

2
 are the left- and 

right-hand sides of Equation (12) respectively, plotted as a function of 
L/x

c
. The solution to Equation (12) is given by the intercept of the two 

functions. Note that two curves for f
2
 are plotted, due to the different 

behavior of the function depending on the sign of (hm/n – 1).
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profile (in other words, the total relief) is strongly constrained by 
the imposed critical taper angle. While the lack of dependence on 
n is only strictly true for the formulation here (see for example 
Whipple and Meade, 2004), further analysis in Section 4 shows 
that other plausible formulations of the upper boundary condition 
give rise to, at most, only a weak dependence on n. Although n 
does not matter for the functional sensitivity of the system, we 
note that it does affect the value of λ. Also, while the solution is 
formally independent of the value of n, a shear stress model of 
river incision would require that changes in n would also change 
m, although changes in m could also occur independently of n via 
changes in channel geometry (e.g., Whipple and Tucker, 1999).

The sensitivity of the rock uplift rate (which in steady-state 
equals the exhumation rate) to tectonic and climatic forcing can 
also be determined. Using U = F/L and Equation (15) gives:

	 U F P
hm
hm

m
hm∝ + +1 1 	 (17)

Again n does not enter, and since h ≈ 2 (e.g., Montgomery 
and Dietrich, 1992) the exhumation rate, like the orogen width, 
is more sensitive to variations in accretionary flux than to varia-
tions in the precipitation rate. Whipple and Meade (2004) do 
not retain precipitation rate explicitly in their formulation; it 
is effectively combined into their rock erosivity parameter, K′. 
They conclude that rock uplift rate is more sensitive to erosivity 
than to accretionary flux for most parameter combinations. By 
substituting K′ = KPm into their scaling relationships, the above 
results can be recovered.

It is interesting to note from Equations (15) and (17) that an 
increase in tectonic flux causes an increase in both rock uplift 
rate and relief (or width). And while an increase in precipitation 
rate also results in an increase in rock uplift rate, it leads to a 
decrease in relief. These contrasting effects might provide a way 
of differentiating the causes of relief changes, via the analysis of 
records of sediment production rates, or of thermochronometry-
based estimates of erosion rates.

It is worth comparing the results of the calculations pre-
sented here to other simple models which have not included the 
tectonic response of the critical wedge. Several previous studies 
have investigated the response of relief to changes in climate and 
uplift by considering a longitudinal river profile of a fixed length, 
driven by a uniform rock uplift rate U (e.g., Whipple et al., 1999; 
Roe et al., 2003). By imposing a fixed length for the river pro-
file (which is taken to represent the major trunk river in a drain-
age basin extending from the foot of the orogen to the divide), 
it is implicitly assumed that the orogen width is fixed. Thus the 
imposed rock uplift rate is always proportional to the implied 
accretionary flux, and U should be regarded as the equivalent 
tectonic forcing for this framework. In this “fixed-width” case, 
Whipple and Tucker (1999) for example, show that the fluvial 
relief varies as:

	 R U Pn
m
n∝

−1

.	 (18)

where we have again retained the precipitation rate explicitly. 
And so taking log derivatives we obtain the relief sensitivity 
relationship:

	
∆ = ∆ − ∆





R
R n

U
U

m
P

P
1

	 (19)

Comparing Equation (19) to Equation (16), it is seen that 
the relative importance of tectonic forcing and precipitation forc-
ing is the same as for the critical wedge. Importantly though, 
the absolute sensitivity is quite different and does depend on the 
value of n.

To contrast these different sensitivities, Table 1 shows the 
relief response for both the critical wedge and the fixed-width 
cases, for three combinations of erosion law exponents represent-
ing three different proposed mechanisms for bedrock incision 
(e.g., Whipple and Tucker, 1999): (a) stream power (m = 1, n = 
1, erosion proportional to rate of release of potential energy), (b) 
unit stream power (m = 1/2, n = 1, stream power per unit channel 398-13

TABLE 1: SENSITIVITY OF RELIEF OF AN OROGEN FOR CRITICAL WEDGE MODEL, AND FIXED-WIDTH MODEL, DESCRIBED IN THE
TEXT, FOR THREE DIFFERENT PROPOSED EROSION MECHANISMS.

Critical wedge Fixed-width

Tectonics Precipitation Tectonics Precipitation

Mechanism m n h

F

1
1+hm

P
!

m
1+hm

U

1
n

P
!

m
n

Stream Power 1 1 2
1
3

(23) –
1
3

(23) 1 (100) –1 (100)

Unit Stream Power
1
2

1 2
1
2

(41) –
1
4

(19) 1 (100) –
1
2

(41)

Unit Shear Stress
1
3

2
3

2
3
5

(60) –
1
5

(15)
3
2

(183) –
1
2

(41)

Note: m and n are discharge and slope exponents, respectively, in the erosion law, and h is the Hack’s law exponent. The ratios in the last four
columns are the values of the exponents for the tectonics and precipitation sensitivities, for the appropriate combinations of h, m, and n. To illustrate
these sensitivities, the figures in parentheses are the percentage increases in relief due to either a doubling of the tectonic forcing, or a halving of the
precipitation rate.
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width), and (c) unit shear stress (m = 1/3, n = 2/3, erosion propor-
tional to basal shear stress per unit channel width). For the critical 
wedge model and using unit shear stress, Table 1 shows that a 
halving of accretionary flux has the same effect as a quadrupling 
of the precipitation rate.

What is clear from Table 1 is that, compared to the case 
of a fixed width, including critical wedge dynamics provides a 
strong negative feedback on relief changes, thereby damping the 
response of the system. As also noted by Whipple and Meade 
(2004), this is because changes in the rock uplift rate tend to 
oppose changes in the width. This can be seen clearly by imagin-
ing that, from an initial equilibrium state, there is a decrease in the 
accretionary flux. This will tend to cause a decrease in the width 
of the orogen and so the accreting flux, F, will thus be distributed 
over a smaller width. The rock uplift rate (i.e., F/L) will therefore 
be larger than if L had been held fixed. The impact of this can be 
quite striking. Taking unit shear stress again as an example, the 
fixed-width model predicts that relief varies inversely with the 
square root of the precipitation rate. For a critical wedge how-
ever, the tectonic feedback means that the relief varies inversely 
with only the one-fifth power of the precipitation rate. In this case 
then, the relief is strongly insensitive to climate in the form of 
precipitation rates.

2.1 Sensitivity to Model Parameters

The analytical solution presented above gives the sensitivity 
of orogen width (and total relief) to changes in accretionary flux 
and precipitation rate, but makes the important assumption that 
everything else is held fixed as the climate or tectonic forcing 
changes. This is a useful idealization, but as the climate changes 
over a particular mountain range (perhaps to one that is storm-
ier), it is entirely possible that the dominant process of erosion 
changes, resulting in different effective values of m and n, or with 
the role of thresholds becoming more important (e.g., Tucker and 
Whipple, 2002)

A second issue centers on whether these feedbacks are able 
to be evaluated in nature. It is difficult, if not impossible, to know 
the detailed history of the evolution of any particular mountain 
range. For example, it is unlikely that regional climate (in the 
form of precipitation rates) will ever be known to a necessary 
level of accuracy over a several million year time scale. One way 
to circumvent this would be to compare present-day mountain 
ranges in different climate and tectonic settings, and to evaluate 
whether the differences in form between them are consistent with 
the feedbacks described here. This space-for-time “swap” is pos-
sible only if other differences (e.g., lithological) do not swamp 
the tectonic and climatic signals, or if their effects can be under-
stood well enough to be controlled for. In this context, it is use-
ful to look at the predicted sensitivity of the mountain width to 
changes in the erosivity, and the critical taper and slope angles.

From field studies, a wide range of erosivities have been 
inferred (e.g., Stock and Montgomery, 1999). Critical taper and 
hillslope angles also show some significant variation (e.g., Davis 

et al., 1983; Montgomery and Dietrich, 1992). Figure 4 shows 
the sensitivity of the halfwidth to changes in these model param-
eters, centered on a control case. In this control case, the precipi-
tation rate is prescribed (P

0
 = 1 m yr–1), as is the accretionary flux 

(F
0
 = 40 m2yr-1). Then taking α

c
 = 4° and θ

c
 = 40°, the erosivity, 

K
0
 is selected so that for specified erosion exponents (h, m, and 

n), the halfwidth L
0
 is 40 km. This gives a rock uplift rate of 1 

mm yr–1. The model parameters are then varied independently to 
produce the sensitivity plots in Figure 4. In reality, it is likely that 
all three parameters are controlled at least in part by lithology, 
and so are not strictly independent. But in the absence of quanti-
tative understanding about how they co-vary, it is worthwhile to 
examine their separate effects.

Figure 4 shows the sensitivity of orogen width for the three 
different choices for the erosion law. The width appears least 
sensitive to variations in the critical slope angle (the reason for 
this is demonstrated in Section 4). For the critical taper angle, a 
doubling from 3° to 6° causes a reduction of ~33% in the width. 
Interestingly, since R = Ltanα

c
 this means that the total relief 

is not changing by very much as the taper angle varies. Lastly, 
variations in the erosivity K can have a substantial impact on the 
orogen width. Studies on observed river profiles have suggested 
that erosivity can vary spatially by several orders of magnitude 
(Stock and Montgomery, 1999). Because of the strong sensitivity 
of the width to the value of K, Figure 4A suggests caution in com-
paring orogens with different lithologies, in trying to evaluate the 
feedbacks presented here.

3. INSENSITIVITY OF SOLUTION TO ROCK UPLIFT 
PATTERN

The simplifying assumptions made in Section 2 allowed for 
an exact analytical solution and a demonstration of the strength 
of the feedback created by incorporating a tectonic response. In 
the next two sections, the analysis is pursued further and we show 
that the magnitude of the feedback is surprisingly insensitive to 
alternative assumptions and model frameworks.

To this point we have assumed the rock uplift is spatially 
uniform. This is, however, quite a strong constraint on the sys-
tem: the precise spatial patterns of horizontal and vertical rock 
velocities are a function of where material is accreted and how 
it deforms within the orogenic wedge (e.g., Willett et al., 2001). 
Underplating and frontal-accretion (both of which can be con-
sistent with spatially uniform rock uplift as we have assumed 
(Masek et al., 1994; Willett, 1999) are useful concepts, but if vis-
cous deformation and thermal coupling, or spatially varying ero-
sion rates, are included, uniform rock uplift is not guaranteed, or 
expected. For example, the non-uniform temperature field within 
an orogen is set by topographic form and exhumation rate. This 
temperature field feeds back on the deformation field via the tem-
perature-dependent viscosity (e.g., Willett, 1999).

The model framework presented here can be extended to 
incorporate a spatially varying rock uplift function, for which we 
take the following general form:
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	 U
F
L

x L= φ( / ) ,	 (20)

where φ is a normalized function (i.e., 0∫
L
 φdx = 1). Rock uplift 

governed by Equation (20) scales with the accretionary flux and 
has been constructed such that it changes self-similarly as the 
wedge changes size. In Appendix A it is shown that as long as 
φ is a positive, simply integrable function, the solution can be 
constructed in a way that is very similar to that for uniform rock 
uplift, and that furthermore it gives exactly the same sensitivity 
of the system as Equation (15). The equivalent expression is:

	 Kk L F P
a
m n

c
hm m hmtan ( )θ λ φ λ  ⋅ ⋅ =+ − −1 1 1 	 (21)

This result is an important extension of the analysis: it indi-
cates that, provided that the pattern of rock uplift varies self-
similarly, the details of the deformation may not be of primary 
importance in determining the sensitivity of a critical wedge to a 
change in forcing. We emphasize that this result applies only to 
the steady-state form, and that the nature of the deformation will 

certainly affect how the system achieves a new steady-state in 
response to a change in forcing. The function φ will be determined 
by the rheological properties of the deforming wedge. Stolar et 
al. (this volume) presents the rock uplift pattern obtained from an 
integration of a coupled tectonics-erosion numerical model.

4. ALTERNATIVE FORMULATIONS OF THE MODEL

We obtained the analytical solution in Section 2 by tying the 
major trunk rivers to the orogen divide via a critical slope. This 
is possible because of the essentially one-dimensional nature of 
the model framework. There are other possibilities. Whipple and 
Meade (2004), for example, obtained their solution by arguing 
(based on data and two-dimensional land surface models with 
prescribed uplift) that fluvial relief is approximately proportional 
to total relief. While critical wedge dynamics requires that the 
mean topographic profile is constrained to follow the taper angle, 
real mountain ranges have meandering divides and complicated 
basin geometries. Therefore the major rivers may be only loosely 
tied to the average divide position. In this section, the solution is 
generalized to show that the manner in which the major rivers are 
tied to the average divide position is of only secondary impor-
tance to the sensitivity of the system to changes in forcing. This 
result accounts for the similarity of the scaling relationship found 
here to that of Whipple and Meade (2004), and it also shows why 
the value of the slope exponent n does not contribute significantly 
to the sensitivity of the system.

From the schematic illustration of Figure 2, we can express 
the total relief generally as:

	 total relief = fluvial relief + hillslope relief.	 (22)

Even if the hillslope relief depends in complex ways on 
other parameters in the system, it can always be written in the 
form xc c

tanθ , where x
c
 is still the transition point between fluvial 

and hillslope regimes, and tanθ
c  denotes the average gradient 

of the hillslopes. We can evaluate the sensitivity of the solution 
to changes in x

c
 and tanθ

c
. Using Equation (10)

1
 for the fluvial 

relief, Equation (22) can be written as:
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After some manipulation, this can be written as follows:

	 F L P Kk

x

L c

hm
nhm m

a
m

c
c

⋅ ⋅ =
− −

− + −( )
(tan tan )( )

1
1

1

α θ

−−



















−
( )
x

L
c

hm
n

n

1

	(24)

Taking log derivatives of the above equation again gives the 
sensitivities for fractional changes in the various parameters. For 
simplicity we assume that α

c
 and K are constant as the forcing 

Figure 4. Sensitivity of the orogen width to model parameters, (A) ero-
sivity K, (B) critical taper angle, α

c
, and (C) critical slope angle, θ

c
. The 

details of the parameters used in these results are given in the text.
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changes. This is not necessary, but makes the solution more eas-
ily relatable to Section 2 and Whipple and Meade (2004):
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Equation (25) can be thought of as a perturbation balance 
equation: in response to an imposed change in forcing (i.e., ΔP, 
ΔF), it shows how the combination of the other variables in the 
system must adjust to achieve a new equilibrium state. The left 
hand side of Equation (25) gives the same sensitivity as the criti-
cal slope upper boundary condition [viz, Equation (15)]. All of 
the dependency on the slope exponent, n, is tied up in the right-
hand side of the Equation (25), which reflects changes in the 
upper boundary condition (i.e., the transition between fluvial and 
hillslope regimes).

The first term on the right-hand side of Equation (25) can 
be considered small. The numerator in the fractional factor is the 
hillslope relief, and the denominator is the fluvial relief. The fac-
tor is therefore small since the latter is in general much larger 
than the former. This explains the relative insensitivity of the 
solution to changes in θ

c
 in Figure 4, and the factor of n explains 

why using simple stream power erosion (which has the highest 
value for n) gave the greatest sensitivity. The second term on the 
right hand side contains a factor x

c
/L, and so might also be con-

sidered small. However it is slightly more problematic, since it 
is possible that hm ≈ n, in which case both the numerator and 
the denominator can get close to zero. However using l’Hôpital’s 
rule, it can be shown that in the limit of hm/n tending to one, the 
second term on the right hand side tends to
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and so the term is indeed always small for x
c
 << L. There are 

two important consequences of Equation (25). The first is that 
changes in the upper boundary condition have only a weak effect 
on the scaling relationship and the second is that, since both 
terms on the right-hand side are small, the dependency on the 
slope exponent n is also weak for other formulations of the model 
framework.

4.1 Alternative Upper Boundary Condition: Critical 
Discharge

The robustness of the scaling relationship to other model 
formulations can be illustrated concretely by choosing an alterna-
tive upper boundary condition for the hillslope processes. Instead 
of a critical slope, it can be assumed that a critical discharge, 
Q

c
, is required for the formation of fluvial channels. For constant 

precipitation this is the same as requiring a critical upstream 
drainage area for channel formation. This assumption has been 
used (either implicitly or explicitly) in a number of studies (e.g., 
Whipple et al., 1999; Roe et al., 2003).

In this case then, from Equation (6), the transition point x
c
 

is given by:

	 x
Q

Pkc
c

a

h

=







1

.	 (26)

While Equation (26) gives the transition point between the 
fluvial and slope-process dominated portions of the profile, one 
more constraint is required to tie the fluvial profile to the wedge 
profile at the drainage divide. To do this we assume constant 
slope above x

c
:

	
dz
dx

dz
dx

x x x xc c≥ =

=
	 (27)

where dz/dx at x = x
c
 is given by Equation (7). There is no particu-

lar justification for Equation (27): it is not obvious what physi-
cal process would fix the slope to the value at the channel head 
where the critical discharge is exceeded. It is used here simply to 
compare the sensitivity of an alternative framework with that of 
the critical slope case in Section 2.We note also that Montgom-
ery and Dietrich (1992) have suggested that channel initiation 
occurs where a combination of slope and discharge conditions 
are reached. Such a condition would also be readily incorporable 
into this framework.

Substituting Equation (27) into Equation (23) gives the solu-
tion for the critical discharge upper boundary condition.
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	 (28)

Although the scaling relationship for this framework can-
not be written down explicitly, the solution is readily obtained 
numerically. Figure 5 shows, for the three different erosion laws 
considered earlier, there is very little difference in model sensitiv-
ity using this alternative upper boundary condition. These calcu-
lations highlight the robust nature of the scaling relationship and 
suggest that despite the simplifying assumptions of the model, its 
implications may be quite broad and generally applicable.

5. SENSITIVITY TO PRECIPITATION PATTERN

To this point the precipitation rate has been assumed to be 
uniform. Doing so allowed for an exact analytical solution, but 
in reality precipitation is highly variable in mountainous regions 
(e.g., Smith, 1979). The pattern of precipitation affects the pat-
tern of river discharge, and so influences the erosion pattern via 
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Equation (3). Imposing plausible patterns in precipitation has 
been shown to have an important impact on the fluvial relief in 
the fixed-width model reviewed in Section 2 (e.g., Roe et al., 
2003). By allowing the relief to influence the precipitation (both 
the amount and the pattern), Roe et al. (2003) also showed that 
the sensitivity of the coupled system to changes in uplift rate was 
also affected.

We do not pursue a full-coupling with a precipitation feed-
back here, but we can begin to address what the impacts might 
be. The results of Section 2 showed that, compared to the fixed-
width model, the critical wedge solution was much less sensitive 
to climate in the form of precipitation rates. In this section, we 
explore the sensitivity of the two frameworks to changing the 

precipitation pattern. The sensitivity can be examined by com-
bining a uniform precipitation rate with a δ -function “spike” in 
the precipitation, located somewhere along the river profile:

	 P(x) = p
0
 + p

1
Δ · δ (x – x

0
)	 (29)

where x
0
 is the location of the spike along the profile. Roe et al. 

(2003) discuss the interpretation of this δ -function in terms of 
expected precipitation patterns, and show that it translates into a 
discharge pattern given by:
	 	

	 	 (30)
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Figure 5. Sensitivity of the solution to 
boundary conditions. (A) width as a func-
tion of precipitation, (B) width as a func-
tion of accretionary flux. The black lines 
are for a critical-slope upper boundary 
condition, and the gray lines are for a 
critical-discharge upper boundary condi-
tion. The line style indicated in the legend 
denotes the three different erosion laws 
tested. For clarity on the plot, the dashed 
lines have been shifted on the y-axis by a 
factor of two. The similarity of the black 
and gray lines demonstrates the robust-
ness of the feedback sensitivity to differ-
ent model formulations.
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It is straightforward to numerically integrate Equation (30) 
with the critical slope upper boundary condition [i.e., Equations 
(4) and (5)], and subject to the critical taper constraint. For the 
curves shown in Figure 6 we take α

c
 = 4°, θ

c
 = 40°, p

0
 = 1 m yr–1, 

and p
1
Δ = 2000 m2 yr–1 (equivalent to an increase of precipita-

tion by 2 m yr–1 over a 1 km portion of the channel). To facilitate 
comparison between curves, K is selected so that in the case of 
uniform precipitation (i.e., P(x) = p

0
), L equals 40 km. This gives 

a total relief of ~2800 m. The total relief can then be calculated 
as a function of the location of the precipitation spike, x

0
, for the 

three different erosion laws. For comparison we also show the 
same curves for a fixed-width model. The details of this are in 
Roe et al. (2003). Here we take L = 40 km, U = 1 mm yr–1, x

c
 = 

400 m, and in the same way select K so the fluvial relief equals 
2800 m for P = p

0
.

The response of the critical wedge model is similar to that 
of the fixed-width model in that the sensitivity of the relief to 
precipitation increases with the proximity of the anomaly to the 
divide. As noted in Roe et al. (2003), in the fixed-width case, 
fractional changes in discharge cause fractional changes in slope 
of the opposite sign, and so the absolute changes in the slope 
are largest where the slopes are largest. Figure 6 shows that this 
also applies to the critical wedge model. An exception is seen for 
the stream power case for x

0
 <~ 1500 m. When x

0
 becomes less 

than the transition point x
c
, the δ -function moves divide-wards of 

the river channel, and the fractional change in the discharge that 
the river channel must accommodate decreases. This effect is an 

artifact of having used a δ -function to test the sensitivity, and is 
likely unimportant in reality.

The overall impression from Figure 6 is that, like the case 
for the uniform precipitation, the critical wedge model is less 
sensitive to the pattern of precipitation than the fixed-width 
model. Nonetheless, the precipitation anomaly chosen here is 
quite moderate compared to observations, so Figure 6 suggests 
that the feedback between the precipitation pattern and relief may 
well be important.

These results should be interpreted cautiously. Importantly, 
the model assumes that the rock uplift is uniform. Willett (1999) 
for example showed that imposing a rain shadow in an orogen 
model incorporating lithospheric deformation causes exhuma-
tion to become focused on the wet side of the orogen. The results 
in this paper show that the sensitivity of the relief changes sig-
nificantly in going from a fixed-width model to a critical taper 
model, and it is equally possible that if the physics of the litho-
spheric deformation can accommodate a localized response to 
a precipitation pattern, the sensitivity of the total relief may be 
quite different again.

DISCUSSION AND CONCLUSIONS

Critical wedge dynamics provide a powerful negative feed-
back on the response of an orogen to tectonic and climate forcing. 
The self-similar growth implicit in critical wedge theory couples 
orogen height to width and, for constant mass flux, directly 

Figure 6. Sensitivity of relief to imposed 
δ -function in precipitation. The graph 
plots relief as a function of the location of 
the δ -function. x = 0 is the drainage divide. 
Lines plotted show the total relief from the 
critical wedge model for the three differ-
ent choices of erosion law (black lines), 
and for comparison, the fluvial relief for 
the fixed-width model (gray lines). Note 
for the fixed-width model, unit stream 
power and unit shear stress have the same 
sensitivity. For the critical wedge model 
and the stream power erosion law, the 
minimum in relief occurs when the tran-
sition point x

c
 becomes greater than the 

location of the δ -function, x
0
. For model 

details see text.
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links rock uplift rate and orogen width. Therefore, changes in 
tectonic or climatic forcing produce a subdued response in the 
relief since the system requires concomitant changes in orogen 
width and rock uplift rate. This paper derived an analytical solu-
tion for the response of the orogen width to changes in tectonic 
forcing (as represented by an accretionary flux), and climate (as 
represented by the precipitation rate). The strength of the feed-
back depends on the parameters in the fluvial erosion law. For 
choices most commonly suggested by theory and observations, 
the orogen width and exhumation rate are both more sensitive 
to tectonic forcing than to climate. And in contrast to the case 
where the width of the orogen is prescribed, the sensitivity of 
the solution does not depend on the value of the slope parameter 
n in the erosion law.

While an analytical solution can only be obtained for a criti-
cal-gradient hillslope condition, we also showed that the scaling 
relationship is at most weakly dependent on both the value of 
n and the way that the major trunk-river profiles connect to the 
drainage divide. It was also shown that the pattern of rock uplift 
does not matter for the sensitivity provided that it is integrable 
and that it changes self-similarly as the orogen size changes. The 
analyses are important in that they suggest that the results may 
be quite generally applicable and not just a consequence of the 
model assumptions. These results are further supported by inte-
grations of a coupled tectonics-surface process model (Stolar et 
al., this volume), which, although it is a much more complex 
system with many ways to adjust to changes in forcing, has a 
sensitivity in close agreement with that predicted by the analyti-
cal results.

It is important to emphasize the limitations and caveats of 
the solution. It implicitly assumes, for example, that as the forc-
ing changes, the dominant physical process governing erosion 
remains unchanged. The relative importance of different ero-
sional processes may well change with climate, particularly with 
changes in storminess (e.g., Costa and O’Conner, 1995; Tucker 
and Bras, 2000; Snyder et al., 2003).

Another complication would be the presence of active gla-
ciers, although the same feedback ought to exist. Existing mod-
els of glaciation at the landscape scale assume erosion which 
scales with the rate of glacier sliding (e.g., Braun et al., 1999; 
MacGregor et al., 2000; Tomkin and Braun, 2002), both of 
which tend to increase with precipitation rate. However, in an 
orogen with significant glaciated areas, it is quite possible that 
because of the very different effectiveness of glacial and fluvial 
erosion (e.g., Hallet et al., 1996), the integrated erosion rate over 
the orogen may be more sensitive to summertime temperature 
(to the degree that it dictates the permanent snow line) than to 
precipitation.

A further possibility not addressed in the calculations pre-
sented here is that the response of the system depends on the 
strength of the rain shadow (e.g., Willett, 1999; Whipple and 
Meade, 2004). As an orogen grows it is to be expected that, all 
else being equal, the strength of the rain shadow increases, both 
because the average ascent and descent on the windward and 

leeward flanks of the orogen, respectively, would be expected to 
increase, but also because more storms would be blocked on the 
windward side (e.g., Smith, 1979). An additional factor is that 
the results in Section 5 and in Roe et al. (2003) showed that the 
pattern of precipitation and in particular the near-divide precipi-
tation is important.

A long-term objective of this work is to be able to reconcile 
observed topographic forms with the climatic and tectonic set-
tings which have given rise to them. Ongoing studies into each 
of these three components of Earth’s system continually yields 
new insights, a result of which is that new physical mechanisms 
and uncertainties emerge. A major challenge for the field there-
fore, is to understand whether there are aspects of this enor-
mously complex system which behave in robust and predictable 
ways, or the myriad feedback pathways and nonlinear interac-
tions preclude a quantitative understanding of the system. All of 
the caveats noted above are reasons why any particular orogen 
might not behave according to Equation (15), or why different 
orogens might behave differently from each other. On the other 
hand, the fundamental nature of the feedback does not depend 
on the system being governed by the strict definitions of critical 
wedge dynamics. Provided the steady-state orogen width has a 
tendency to increase in response to an increase in accretionary 
flux (or a decrease in precipitation rate), the feedback will tend 
to operate to damp the system response to changes in forcing. 
Moreover taking one particular framework, we have shown that 
the feedback is strong, that its magnitude is insensitive to some 
of the details of the model formulation and furthermore, that it 
captures the behavior of a more complex numerical model (Sto-
lar et al., this volume). The results lend confidence that aspects 
of the system are indeed robust and comprehensible, and that it 
therefore remains a worthwhile, if challenging, research goal to 
pursue an understanding of how climate, erosion, and tectonics 
have combined to sculpt Earth’s landscapes.
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APPENDIX A: SOLUTION FOR NON-UNIFORM 
UPLIFT RATE

For the framework of Section 2 the total relief in the wedge, 
R, can be written as

	 R L
dz
dx

dx x
c L

x

c c

c= = +∫tan tanα θ .	 (31)

Taking the rock uplift function given by Equation (20), 
requiring a pointwise balance between erosion and this uplift 
rate, and rearranging for dz/dx, gives an equation similar to 
Equation (7):
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which, upon substitution into Equation (31), gives:
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Next we make a substitution of variables y = x/L:
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Finally, using Equation (32) with x = x
c
, and rearranging 

gives:
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Provided φ(y) is an integrable function, then like the uniform 
rock uplift solution, Equation (35) is an implicit equation in L/x

c
. 

The solution can be written as L/x
c
 = λ, with the value of λ to be 

found. Using Equation (32) with x = x
c
, and rearranging gives:

	 λ φ λ θhm
a

m n
c

hm mk K
h
n

L F P( ) tan− + −=








 ⋅ ⋅1 1 1 .	 (36)
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