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ABSTRACT

Baroclinic instability in two-level models is characterized by a critical vertical shear, for values above which
the flow is unstable. Existing studies of nonlinear baroclinic equilibration in two-level models suggest that, while
equilibration does occur, it does so for values of vertical shear that are supercritical. The criterion used for the
critical shear, however, ignores nonlinear changes in barotropic (meridional) shear. The present note estimates,
using the two-scale formalism, the effect of both jet scale and damping on the critical value of vertical shear.
The results suggest the barotropic shear in the equilibrated states may be sufficient, in the presence of damping,
to render the equilibrated states neutral. More generally, it appears important to take account of the nature of
the evolved flow when assessing the stability properties of the equilibrated state.

1. Introduction

The notion that hydrodynamic instabilities act to
bring a flow toward a state that is neutral with respect
to the instability has long been a part of fluid mechan-
ics. It receives its most common application in the form
of convective adjustment. Not surprisingly, there have
also been attempts to use this notion in problems in-
volving baroclinic instability. The problem here is the
absence of a simple well-defined criterion for stability.
For example, the classic Charney and Eady problems
do not have a critical shear. Moreover, the only theo-
retical statement concerning instability is the Charney—
Stern theorem, which states that a necessary but not
sufficient condition for instability is that there exists
some surface where the meridional gradient of a quan-
tity related to potential vorticity changes sign. In most
realistic cases this criterion is met due to a delta-func-
tion contribution to the gradient associated with merid-
ional surface temperature gradients. Neutralization is
most easily achieved by eliminating surface tempera-
ture gradients and smoothly merging to the interior gra-
dient. Unfortunately, the resulting state looks nothing
at all like the observed climatological state. Recently,
Lindzen (1993) noted that it was possible to neutralize
a flow that still satisfied the Charney—Stern condition.
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He noted that if one mixed potential vorticity (PV)
within the troposphere, one could, by raising the tro-
popause (defined as the level where the PV gradient is
concentrated) and narrowing the subtropical jet, pro-
duce baroclinic neutrality by producing a short-wave
cutoff that was smaller than zonal wavenumber 1. The
question. of whether the nonlinear dynamics of the at-
mosphere act to approach this state is, however, a dif-
ficult one to resolve insofar as tropopause height, jet
width, and jet position are all involved.

The situation is potentially simpler for two-level
models (Phillips 1954). A two-level model does have
a critical shear (which is directly derivable from the
Charney—Stern condition; viz Lindzen 1990). Al-
though the two-level model is not an appropriate ap-
proximation to the atmosphere, it has been suggested
that its neutral state might provide an estimate of the
observed midtropospheric meridional temperature gra-
dient in the atmosphere (Stone 1978). Apart from such
speculations, the nonlinear behavior of two-level mod-
els is easier to compute than the nonlinear behavior in
realistic continuous atmospheres. Such calculations can
be used to see if, at least in two-level models, an equil-

‘ibrated state develops that is approximately neutral.

This might lend some confidence to the notion that
baroclinic adjustment is relevant to the atmosphere.
Such attempts were made by Cehelsky and Tung
(1991) and Stone and Branscome (1992). Both studies
did find equilibrated states that parametrically behaved
like baroclinic adjustment suggested, but where the
shears were significantly larger than the purported neu-
tral values (i.e., supercritical ). It was suggested by both
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studies that wave—wave interactions led to longer dom-
inant waves whose critical shear was larger than that
which pertained to the most unstable mode. Such a re-
sult is not, on the whole, encouraging for the straight-
forward application of baroclinic adjustment in a more
realistic situation.

However, Stone and Branscome (1992) calculated
the critical shear assuming no meridional (barotropic)
shear, whereas Cehelsky and Tung (1991) calculated
the instability of modes with respect to the initial state
rather than the equilibrated, final state. Their nonlin-
early equilibrated flows did display barotropic shears,
and as shown by Ioannou and Lindzen (1986) and
James (1987), such shears do affect instability.
Whereas James (1987) was concerned with the growth
rates of the unstable modes in a set up similar to the
one adopted below, the more pertinent parameter for
the baroclinic adjustment hypothesis is the critical
shear. The purpose of the present note is to assess the
degree to which the barotropic shear of the subtropical
jet affects the critical shear. This note is not meant to
be an exhaustive calculation of the stability profiles for
the atmosphere; given the approximations inherent in
the two-level model, the point of such a calculation is
questionable. Since the intention is merely to explore
the possibility that the equilibrated state might be baro-
clinically neutral in the conventional linear sense, we
choose to adopt the simple two-scaling approach of
Ioannou and Lindzen (1986) and apply it to the two-
level model. It is found that the critical shear is indeed
dependent on the narrowness of the jet. For jets with
scales about equal to those observed in the atmosphere,
the critical shear is quite sensitive to small changes in
the jet width.

2. The equations

The problem addresses the stability of the basic state
that is a function of height z and latitude y to pertur-
bations of the form exp[ik(x — ct)] (k is the zonal
wavenumber and c is the phase speed, which is in gen-
eral complex). Denoting perturbation quantities by
primes, the vorticity and thermodynamic equations
may be respectively written as

82¢’
y?

iklu(y, z) — c]{—k2¢>' +

8?2 ow’
+ ik¢'[§ﬁ(y,z) + ﬁ] —f%a—t -0 (1)
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ik[u(y, z) — c] —— — ik¢’ 9 i(y,z) + w'N?=0,
0z 0z
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where u(y, z) is the basic-state zonal wind, ¢ is the
geopotential height, w is. the vertical velocity, f; is the
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Coriolis parameter at a given latitude, and N is the
Brunt-Viisdld frequency. Subsequently, the primes
will be dropped from the perturbation fields.

In the instance of a two-level model with no merid-
ional variation, the vorticity. equation is evaluated in
the middle of each of the two layers and the thermo-
dynamic equation is applied at the interface between
the two layers. Centered differences are used to cal-
culate the derivatives, and boundary conditions of zero
vertical velocity are applied at the upper and lower lids.
The three resulting equations can then be solved for the
phase speed c. Details may be found in Lindzen
(1990).

If there is meridional variation allowed in the basic
state, the problem becomes inseparable in height and
latitude. Ioannou and Lindzen (1986, 1990) tackled the
problem by using an assumption that the meridional
scale of the jet is large compared with the deformation
radius. The meridional variation of the jet is given in
terms of the slow variable Y, where Y = y/Land L > 1;
Y and y are then treated as independent variables. Thus,
L is a measure of how many times broader the jet is
than the radius of deformation. Typical values in the
atmosphere range between about 0.8 and 1.7 (Ioannou
and Lindzen 1986). Although the scaling is strictly
valid in the limit only of large L, the precise determi-
nation of the proper value at which L is large is ambig-
uous. Lin and Pierehumbert (1988), employing a full
numerical calculation, find good agreement with Ioan-
nou and Lindzen’s (1986) results even at jet widths
appropriate to the atmosphere, suggesting that our re-
sults are in the domain of asymptotic validity. Physi-
cally, this is a result of the fact that the ‘‘wave geom-
etry,””’—the configuration of the turning points and
critical levels within the fluid domain—does not
change as the jet tightens. The wave geometry essen-
tially confines the modes to a waveguide in the core of
the jet, and the first-order approximation of the two-
scaling approach reflects this behavior, provided that
the mode remains wavelike in the meridional direction
within the jet.

So, a separable solution is sought of the form

~ 1.
¢ = W(y)[%(Y, )+ 76X, 2)

1 5
+E¢2(Y,z)+ ]

and

11
C=C0+ZC1+P62+

Upon substitution, Eq. (1) and Eq. (2) become to first
order
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Because the lhs of Eq. (3) is independent of y and
the rhs is independent of z, the equation may be sepa-
rated into two equations linked by a variable dependent
only on Y:

O
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The problem is now only loosely coupled in y and
z through the variable [(Y). Equations (5) and (6)
may be applied to the two-level fluid in the same
way as for the homogenous (no y-variation) prob-
lem, yielding the same dispersion relation except
that k? is replaced by d?(Y) = k? + [*(Y). To make
things clearer, the equations may be nondimension-
alized:

z=HZ
dit Ot
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Jo

where a is the radius of deformation and m is the mag-
nitude of the shear at the center of the jet (assumed
constant with height). The dispersion relation is then
given by (dropping the tildes)
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where u,, is the mean, and u; is half of the difference,
of the winds in the two levels. r = (BH)/(em) with ¢
= f2/N?. Note that r is thus the nondimensional mea-
sure of the inverse of the shear.

The critical shear for uniform flow (no jet) in a chan-
nel of width AY may be deduced from Eq. (7). In this
case uy, ur, and d are no longer functions of Y and,
because of the nondimensionalization of the equations,
are fixed; uy, = 0.5, uy = 0.25, and, for the lowest
meridional mode, d*> = k? + (w/AY)?. A mode will
be unstable (i.e., imaginary part of ¢ greater than zero)
if the discriminant in Eq. (7) is less than zero. The
strength of the shear of the basic-state varies inversely
with the parameter r. It is readily shown (e.g., Lindzen
1990) that for r less than one, there are unstable modes,
whereas for r greater than one, there are none. If there
is a jet, then d is, in general, complex and the value of
the critical shear needs to be calculated. In the limiting
case of a very large-scale jet, the answer must, of
course, tend to the critical shear given by r = 1.

The problem has been reduced to inverting the tra-
ditional two-level model dispersion relationship at each
latitude subject to Eq. (6) and the appropriate boundary
conditions. It can be solved by applying a ‘‘shooting’’
method across the domain and iterating to a converged
solution as outlined in Ioannou and Lindzen (1986).

3. Results

For the results presented below a jet structure of the
following form was used:

mz
\/1+Y2'

The boundary conditions require that the solution must
be evanescent at large values of Y. Since a growing
mode is largely confined to the jet region, the results
for jet scales appropriate to the atmosphere will not
depend on whether an open domain or a channel of
around 5000 km is used as in, for example, Stone and
Branscome (1992).

To facilitate comparison with Stone and Branscome
(1992), we adopt their values of N> = 1.35 X 107572,
fo=935x%x10"°s~! and H = 7.5 km. The critical shear
for a two-level model of this construction and with no y-
variation is 2.02 ms™' km™'. Stone and Branscome
chose the shear of their basic state to be about 4.7
m s~ km™', equivalent to a maximum jet at the tropo-
pause of 70 m s . In their standard run, they also include
Ekman friction acting on the surface winds with a time-
scale of 2.5 days and a radiative damping time of 25 days.

The most straightforward manner to introduce damp-
ing in the present formulation is to apply the same lin-
ear damping to the momentum and thermodynamic
equations. Consistent with the large L assumption, this
can be implemented just making the transformation

Uu =
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Fic. 1. Dispersion relations for different jet structures. Here, k is the zonal wavenumber, ¢, (plotted as a solid line) is the real part
of the phase speed, ¢; is the imaginary part of the phase speed, and hence kc; (plotted as a dashed line) is the growth rate; (a) has no
jet, (b) has L = 10, (c) has L = 1.5, and (d) has L = 0.75. All plots are for r = 0.43 and damping time o = 0.02. Axis scales are

nondimensional.

U—- U — i(a/k), where « is the inverse of the damping
timescale. It is interesting that the results presented be-
low are somewhat sensitive to the damping timescale
adopted, whereas Stone and Branscome’s results are
rather insensitive. This may perhaps be due to the dif-
ferent formulations of the dissipation. It is not obvious
what linear damping timescale corresponds most
closely to an Ekman damping timescale, so we present

results for a variety of damping times. The appropri-
ateness of either formulation applied to the two-level
model is questionable. -

The dispersion relations for different jet widths are
shown in Fig. 1. In the region of the long-wave cut-
off, the algorithm described did not converge well,
so we show only wavenumbers for which the solution
was strongly convergent. The convergence was poor
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because of the presence of a singularity in the inver-
sion of the dispersion relation. Specifically, the
shooting method used started to jump between the
two branches of the inverted dispersion relation. This
is characteristic of such methods when applied to the
most weakly growing modes. However, it is the crit-
ical shear that is of interest, and the solution at the
maximally growing wavenumber was well con-
verged.

The solution for a broad jet agrees well with the no-
jet solution, as would be expected (see Fig. 1). As the
jet narrows, a marked reduction in growth rates occurs.
Such a reduction implies that the critical shear for in-
stability may be increasing. Figure 1 also shows that
the narrower the jet, the longer the wavelength of the
most unstable mode. The variation of growth rate with
shear may be calculated for jets of different widths, and
the results for a strong damping timescale of 2.5 days
are shown in Fig. 2. For jets with meridional scales
comparable to those observed in the atmosphere, the
critical shear may be a factor of 2 larger than the critical
shear in the absence of both a jet and damping.

The sensitivity of the critical shear to the jet scale
increases as the jet tightens, so that even relatively
small changes in structure may affect the critical shear.
The variation of the critical shear with jet width is
shown in Fig. 3 for several different frictional time-
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F16. 2. Maximum growth rate vs basic-state shear for various jet
widths. Damping, where applied, is 2.5 days. The critical shear for a
given jet scale is given by the intersection of the appropriate curve
and the shear axis. In calculations without a jet, the shear is indepen-
dent of y and equal in magnitude to the maximum shear of the jet
(i.e., at the center).
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F1G. 3. Critical shear vs jet scale for different damping timescales.
The cross symbols are results for damping of 10 days, the plus sym-
bols for 5 days, and the asterisk symbols for 2.5 days. The scale of
the jet is equal to the Rossby radius multiplied by L.

scales. Quantitative comparisons of these results with
previous studies may be a little deceptive; the exact
value of the critical shear will depend on the setup of
the model and in particular on the magnitude and form
of dissipation adopted.

4. Summary and conclusions -

The presence of a barotropic jet stabilizes a flow by
confining the region of strongest shear. We have shown
that, for jets of atmospheric scale, the effect of this
stabilization on the critical shear in the two-level model
is striking. Dependent on the dissipation used, we find
that the shear necessary for instability may be a factor
of 2 or so larger than for the case of a two-level model
with no jet.

We also find that the sensitivity of the critical shear
to small variations in the jet structure is acute, which
suggests that it is important in nonlinear studies to as-
sess the stability of the flow, specifically the degree to
which the flow exceeds the critical shear, against the
equilibrated final state rather than the initial state. In
particular, it would appear that the equilibrated states
in Cehelsky and Tung (1991) and Stone and Brans-
come (1992) may well be near neutral, but that the
critical shear depends on the nature of the evolved flow
and cannot be determined a priori. This is true of any
search for equilibration and is not restricted to two-
level models.
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