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[1] We solve for the steady state patterns of erosion rate and topography in a critical
wedge to understand the mutual adjustment of tectonics, erosion, and topography in the
absence and presence of spatial variations in precipitation rate. We consider steady state
systems in which tectonics favors a critical topographic form, assumed to be the mean
elevation across the range, and in which surface erosion by rivers and hillslopes operates
on a two-dimensional landscape. We find that (1) a nonuniform critical topographic form
implies a nonuniform pattern of ridge-valley relief and hence a nonuniform pattern of
erosion rate, and (2) when the system is forced by local variations in precipitation rate,
maintenance of the critical topographic form requires a local response of rock uplift that
greatly dampens changes in topography. We apply these concepts to the western side
of the Olympic Mountains of Washington State, where mean elevation, ridge-valley relief,
and precipitation rates increase from the coast to the topographic crest of the range. We
find that the main control on the erosion rate pattern is the pattern in mean elevation
and the amount of precipitation. In contrast, the pattern of precipitation is only a minor
control. As a whole, our work demonstrates an approach for developing the theoretical
context that is necessary for interpreting spatial associations between patterns in
topography, precipitation, and erosion in natural orogens.
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1. Introduction

[2] Over the past two decades, work by a broad community
of Earth scientists has led to an increased understanding of
the evolution of convergent orogens. The centerpiece is a rich
conceptual model, in which mountain building is controlled
by tectonic, erosional and climatic processes [Beaumont et
al., 1992; Avouac and Burov, 1996;Willett, 1999a; Beaumont
et al., 2001]. In this paper, we address one of the principle
unknowns in this conceptual model: what are the implica-
tions of coupling between tectonics and erosion for the
patterns of topography, erosion rate and deformation?
[3] One of the key insights into this question in conver-

gent settings is that topography plays a very important role:
body forces from topography influence stresses within the
crust and therefore can influence the rate and pattern of
deformation. Furthermore, it has been proposed that mean
topography in a convergent orogen should evolve toward a
specific form, hereafter called a critical topographic form,
which represents a balance between internal and boundary

stresses [Davis et al., 1983; Dahlen, 1984]. Perturbations to
this topographic form, as might arise from surface erosion,
are expected to be compensated by deformation-driven rock
uplift, thereby providing a strong connection between the
patterns of erosion rate and deformation. Since the notion of
critical topography was originally proposed for orogens in
which deformation occurs by brittle failure, a number of
numerical modeling studies have demonstrated that orogens
characterized by other rheologies are also responsive to
surface erosion, in the sense that removal of mass from the
surface leads to changes in the pattern of deformation [e.g.,
Beaumont et al., 1992; Willett, 1999a; Beaumont et al.,
2001; Godard et al., 2004].
[4] Whereas numerical models have been effective tools

for describing the behavior of the coupled system, there is a
growing interest in using simpler models based on critical
wedge theory to understand how climate and erosion
influence an orogen’s size and rate of growth [Hilley and
Strecker, 2004; Hilley et al., 2004; Whipple and Meade,
2004, 2006; Roe et al., 2006]. However, none of these
studies explain how the patterns of erosion and deformation
relate to each other: in the first two studies noted above, the
pattern of erosion rate was imposed; in the other studies,
only the range-average erosion rate was considered. Thus
there is a real opportunity to understand how the patterns of
erosion and deformation emerge from the mutual interac-
tions between tectonic, erosional, and climatic processes.
[5] In this paper, we present a self-consistent theoretical

framework in which to understand the coupling of surface
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erosion and tectonic deformation. We restrict our analysis to
a simple tectonic-erosional system, an eroding critical
wedge at steady state, and consider only prescribed patterns
in precipitation. We begin by using a set of numerical
simulations to illustrate the behavior of the coupled system
under different patterns of precipitation. The results of these
simulations then guide the development of a simpler frame-
work that both reproduces and explains the salient features
of the more complicated numerical model. Finally, we use
the example of the Olympic Mountains of Washington State
to predict the influence of an actual pattern of precipitation
on the erosion rate pattern.

2. Numerical Model

2.1. Description of the Numerical Model

[6] We use a tectonic-erosional model that was developed
to describe the evolution of accretionary wedge settings
[Stolar et al., 2006]. The primary advantage of the model is
that it allows us to examine the evolution of a theoretical
orogen in which the interactions between tectonics and
erosion are not overly prescribed. The tectonic model simu-
lates crustal deformation in response to steady frontal accre-
tion and predicts horizontal and vertical velocities within a
two-dimensional, cross-sectional domain (Figure 1) [Willett
et al., 1993; Willett, 1999a]. We assume a Coulomb plastic
rheology such that the tectonic system behaves like a critical
wedge orogen: internal deformation and sliding along the
base maintain the form of the upper surface, which is
expected to have a constant slope over much of the orogen
[e.g., Dahlen, 1984; Wang and Davis, 1996; Willett, 1999b;
Stolar et al., 2006]. In later sections, we demonstrate that the
results of our work do not rely heavily on the specific
topographic form.
[7] We also assume no isostatic compensation. This

assumption is appropriate in our study because, as is
demonstrated by the numerical modeling results, the
across-orogen patterns of minimum, mean and maximum
elevation achieve relatively steady forms. Because the
across-orogen pattern of topography, and hence crustal
loading, is steady, it follows that isostasy would not influ-
ence the across-orogen patterns of deformation or erosion.
[8] Surface erosion is simulated in planform with the

Cascade surface process model [Braun and Sambridge,
1997], which solves for surface mass transport on an
irregular network of nodes. At any given time during orogen
evolution, the model landscape is divided into two process
regimes: bedrock channels and hillslopes. Hillslopes are
stipulated to have a threshold slope, sc. Within the channel
network, the stream power law is used to calculate the
erosion rate, e:

e ¼ kqmsn; ð1Þ

where k is a measure of the bedrock erodibility, q is the water
discharge, s is the downstream slope, and m and n are related
to the physical processes of bedrock erosion [e.g., Whipple
and Tucker, 1999; Whipple et al., 2000; Finnegan et al.,
2004]. We chose m = 1/2 and n = 1 (unit stream power) and
assume purely detachment-limited conditions; that is,
sediment does not influence the incision rate [Sklar and
Dietrich, 2001, 2004; Whipple and Tucker, 1999, 2002].

[9] Recent theoretical considerations suggest that some of
the complexities now recognized to influence bedrock
incision, e.g., changes in bedrock channel width and a
tools-and-cover effect of sediment, lead to fluvial erosion
laws with the same functional form as equation (1). For
example, Finnegan et al. [2004] suggested that channel
width might itself be a power law function of discharge and
slope, such that the erosion rate follows equation (1). Also,
Whipple and Tucker [2002] and Gasparini et al. [2006]
have shown that, at topographic steady state, some sedi-
ment-dependent erosion laws collapse to equation (1). Thus,
with the notable exception of erosion thresholds [e.g., Lavé
and Avouac, 2001; Snyder et al., 2003], the functional form
of the stream power law appears to be fairly accommodating
to geomorphic complexity. The robustness of equation (1) is
particularly useful in this study because, as is demonstrated
below, the general results do not depend on the specific
values of k, m or n. In the discussion section, we will revisit
the implications of deviations from the stream power law.
[10] In the numerical model, surface erosion and tectonic

deformation are coupled in both directions. The mean
elevation across the landscape generated by the surface
process model is used as the upper surface of the tectonic
model (thick black line in Figure 1). In turn, horizontal and
vertical velocities calculated along the upper surface of the
tectonic model are used as forcing conditions in the surface
process model [e.g., Beaumont et al., 1992]. Thus changes
in the landscape are transmitted to the tectonic system and
vice versa.

2.2. Numerical Model Results

[11] We investigate the response of the coupled system to
two simple patterns of precipitation. We first examine the
case of uniform precipitation. This provides a reference for
the nonuniform case, which follows, and allows us to
address the question of whether uniform precipitation pro-
duces a uniform response in rock uplift, deformation and
erosion rates. Second, we apply a nonuniform pattern of
precipitation that includes a narrow zone, midway up the
critical slope of the wedge, in which the precipitation rate is
increased by a factor of eight. The precipitation variation is
made extreme for illustrative purposes, as this experiment
dramatically illustrates the response of the coupled system

Figure 1. Numerical model with dimensions and bound-
ary conditions. Tectonic model is solved in the vertical
plane (mesh is coarsened for display purposes). The surface
process model is solved in planform. The surface process
model domain has x and y lengths of 1000 and 60 km,
respectively, but for display purposes, the entirety of the
x dimension is not shown. Height of incoming crust, H, is
10 km. The basal velocity decreases from the convergence
velocity (vc = 20 km/Ma) to zero at point S.
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to nonuniform precipitation; more realistic precipitation
patterns are considered in section 7.
2.2.1. Uniform Precipitation
[12] The results of the uniform precipitation simulation

are presented in Figure 2. The simulated orogen begins as a
nearly flat landscape with small random perturbations and
grows until it reaches a steady size. Because horizontal rock
velocities are nonzero over the entire orogen, planform
topography never achieves a perfect steady state: a snapshot
of the planform topography is shown in Figure 2a. How-
ever, other important characteristics of the orogen do attain
steady state: the steady state minimum, mean and maximum
elevation across the range are shown in Figure 2b (thick
lines); the xx component of the steady state strain rate tensor
is shown in Figure 2c; the steady state erosion rate across
the range is shown in Figure 2d (thick black line). Note that,
at steady state, the erosion rate, e, and the velocity of rock at
the surface are related by: e = u � v dz/dx, where dz/dx is
the slope of the mean topography and u and v are the
vertical and horizontal rock velocities, respectively. In the
simulations presented here, the mean topographic slope is
small, such that the pattern of erosion rate mostly reflects
variations in the vertical rock velocity [Stolar et al., 2006].
[13] The results in Figure 2 reveal two important scales of

variation. At the largest scale, the patterns of topography,
deformation and erosion rate vary in the same way: they
increase toward the center of the range. Mean elevation
increases toward the main divide, with a slope (1.5�) that is
consistent with the internal and basal friction angles (20�
and 3�, respectively) assumed in the tectonic model [Dahlen,
1984]. Deformation rates also increase away from the pro-
and retro-wedge toes. Erosion rates are near zero at the
pro- and retro-wedge toes and increase to maxima close to
the main divide. We also note that ridge-valley relief,
which we define as the difference between the maximum
and minimum elevation, follows a very similar trend.

[14] There is also variation at the scale of the crustal
thickness. This is due to localization of strain within shear
zones, which are oriented at roughly 45� from horizontal
and occur as conjugate pairs (Figure 2c). Focusing of
deformation within these zones is reflected by local maxima
in the mean elevation and erosion rate (Figures 2b and 2d).
We return to these features in the discussion.
[15] The key result from this simulation is that significant

spatial variability in deformation, erosion and topography
can arise even with uniform precipitation; we explore the
physical reasons for this in a later section.
2.2.2. Nonuniform Precipitation
[16] To illustrate the response of the coupled model to

nonuniform precipitation, we impose an eightfold increase
in precipitation rate within a narrow zone oriented parallel
to the strike of the orogen. As noted above, this box car
pattern is not intended to be realistic but is useful for
illustrative purposes.
[17] The results of the nonuniform precipitation simula-

tion are shown in Figure 3. Figures 3a and 3b show that
localization of precipitation produces only small changes in
the topography. Relative to the uniform precipitation sce-
nario, orogen width decreases by 10%. This is expected
since the mean precipitation rate and thus the mean erosion
rate over the orogen have increased [e.g., Hilley and
Strecker, 2004; Whipple and Meade, 2004; Roe et al.,
2006]. Within the zone of increased precipitation, the
ridge-valley relief decreases by 3%. The change in relief
is remarkably small considering that, relative to the uniform
precipitation scenario, the local precipitation rate has in-
creased by 700%.
[18] The local responses of erosion rate and deformation

are much more dramatic. Whereas the mean erosion rate
over the orogen increases by 15% as a consequence of
the decrease in the orogen width, the erosion rate within
the zone of increased precipitation increases by 115%

Figure 2. Numerical model results from uniform precipitation scenario. (a) Planform topography at t =
10 Ma, with warmer colors representing higher elevations. (b) Minimum, mean, and maximum elevation
profiles across the orogen (thick lines). These have been averaged over 4 Ma during which the long-
wavelength topography is at steady state. Seventeen profiles from 0.25 Ma intervals during this same
period are shown in gray. The detachment point S of the tectonic model is denoted by the black bar.
(c) The xx component of the strain rate tensor at t = 10 Ma, with warmer colors representing higher strain
rates (i.e., higher spatial gradients in the horizontal velocity). (d) Time- and space-averaged erosion rate
profile as defined in Figure 2b, with 17 profiles at 0.25 Ma intervals shown in gray. Parameter values are
m = 1/2, n = 1, k = 2 � 10�6 m�1/2 yr�1/2, and sc = 30�, and the precipitation rate is 1 m/yr.
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(Figure 3d). Deformation rates are also very high in this
region (Figure 3c), and the xx component of the strain rate
tensor reveals that horizontal rock velocities decrease rather
sharply across the region of increased precipitation. Thus
there is a striking difference between the topographic and
deformation responses: localized precipitation leads to a
very weak topographic response and much stronger erosion
and deformation responses.
[19] Taking the key results of the numerical simulations

as motivation for further investigation, the target for the
remainder of this paper is to understand the following two
questions in the simplest manner possible: (1) Why does
uniform precipitation result in nonuniform deformation and
nonuniform erosion rate? and (2) why are the topographic
and deformation responses to nonuniform precipitation so
different? Eventually, we show that aspects of a two-
dimensional landscape are crucial for understanding the
answers to both questions. To begin with, however, we first
assume that the inverse is true. That is, a one-dimensional
landscape is sufficient. By showing that the predictions of a
one-dimensional landscape are vastly different from the
numerical model results, we make an initial argument for
the importance of a two-dimensional landscape, which is
then supported in later sections.

3. One-Dimensional Model

[20] The tectonic and erosional components of the cou-
pled system can both be reduced to one-dimensional repre-
sentations. We assume a critical wedge with a surface taper
angle, a, and represent the landscape as a single river profile
[e.g., Beaumont et al., 1996; Willett, 1999a; Hilley and
Strecker, 2004; Hilley et al., 2004]. Therefore, in this model,
the river has a constant slope of tan(a). Letting x be the
distance from the divide, the water discharge, q, in the case
of uniform precipitation is

q ¼ pkax
h; ð2Þ

where p is the precipitation rate, ka is a constant and h is the
inverse of the Hack exponent. Assuming that the river

erodes according to the stream power law (equation (1)), the
erosion rate is simply

e ¼ kkma p
m tann a

� �
xhm: ð3Þ

Because the exponent on distance, hm, is positive, the one-
dimensional model predicts that the erosion rate is zero at
the divide and increases with distance from the divide. This
is essentially the opposite of the numerical model result
(Figure 2d).
[21] If precipitation rates are increased within a zone

located somewhere between the divide and the wedge toe,
the erosion rate will increase wherever the water discharge
is higher, i.e., both within and downstream of the precipi-
tation increase. Again, this prediction does not agree with
the numerical model results (Figure 3d), in which the
erosion rate response is localized about the zone of in-
creased precipitation.
[22] Despite the difference in complexity, the tectonic

components of the one-dimensional and numerical models
obey similar, linear critical topographic forms. The crucial
difference between the two models is that, in the numerical
model, ridge-valley relief is allowed to exist. In the next
section, we examine the implications of ridge-valley relief
for the pattern of erosion rate.

4. Trellis Model

[23] We introduce the effect of ridges and valleys by
considering a very simple surface process model (Figure 4a).
The drainage pattern is a symmetric trellis network. Each
tributary drains into the main channel and is connected to
the ridge by a threshold hillslope. This model is nearly
identical to that of Lavé [2005] and Godard et al. [2004],
with the only significant difference being that the angle
between the tributaries and the main channel is 90�, whereas
these studies assumed an angle of 40�. As explained below,
the principal advantage of a perpendicular drainage network
is the very simple connection between ridge-valley relief
and local rock uplift and erosion rates: at a given point along
the main channel, the rock uplift rate that influences the

Figure 3. Numerical model results from the nonuniform precipitation scenario. See caption of Figure 2
for more details. (a) Planform topography, (b) elevation profiles, (c) strain rate, and (d) erosion rate
profiles. Gray bar represents the region in which the precipitation rate is eight times that of the
background rate. Other parameter values are the same as in Figure 2.
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main channel slope is the same rock uplift rate that
influences the ridge-valley relief. As a result, this surface
process model is more conducive to analysis.
[24] The critical wedge model requires that the average

cross-strike elevation has a constant slope in the x direction
(Figure 4b). Note that this definition of the mean elevation
is an average of two points, the ridge and channel eleva-
tions, rather than the integrated average of the tributary
profile. We assume that rock velocities are purely vertical
and that a pointwise topographic steady state exists through-
out the model domain. Because rock uplift rate has a more
intuitive connection with ridge-valley relief, we switch
terminology and use rock uplift rate instead of erosion rate
for the remainder of this section and for the following
section. Finally, rock uplift rates and precipitation rates
are uniform in the y direction and within each tributary
basin, and the slope of the main channel is constant between
tributary boundaries.
[25] For a critical wedge with a surface taper angle of a,

the mean elevation, z, is equal to xtana, where x is the
distance from the toe of the wedge (Figure 4). The mean

elevation at the ith tributary junction, zi, must also be equal
to the sum of the main channel elevation, zi, and one half of
the ridge-valley relief, ri, within the tributary basin:

zi ¼ zi þ ri=2: ð4Þ

For a landscape with N pairs of matching tributary basins,
equation (4) must hold at each main channel-tributary
junction; that is, equation (4) is a closed system of equations
that can be used to solve for rock uplift rate pattern.
[26] In Appendix A, we derive expressions for the main

channel elevation (equation (A2)) and ridge-valley relief
(equation (A4)) in terms of specified parameters (e.g., k, pi,
qi) and unknown rock uplift rates, ui. For a specified
accretionary flux, precipitation rate pattern and drainage
network, we can solve for the rock uplift rates using the
Newton-Raphson method. We use the same parameters
(e.g., taper angle and accretionary flux) as in the numerical
model and contrast the same two cases of uniform and
nonuniform precipitation. For simplicity, we consider only
one side of a symmetric wedge. The extension to an
asymmetric wedge is straightforward, following Whipple
and Meade [2006].

4.1. Uniform Precipitation Results

[27] Elevation and rock uplift rate profiles for the uniform
precipitation rate scenario are shown in Figure 5. They are
very similar to the results of section 2.2.1 (Figures 2b and
2d). Ridge-valley relief and rock uplift rate are near zero at
the toe and increase toward the main divide. Note that the
maxima in rock uplift rate and ridge-valley relief are
coincident and occur where the slope of the main channel
matches the taper angle.

4.2. Nonuniform Precipitation Results

[28] Elevation and rock uplift rate profiles for the non-
uniform precipitation scenario are shown in Figure 6. As
with the case of nonuniform precipitation, the results are
consistent with the results of section 2.2.2 (Figure 3). The
model in Figure 6 has more total precipitation than the
previous model (Figure 5), and therefore the wedge is
narrower at steady state. Within the zone of increased
precipitation, the main channel slope is higher than in
regions upstream and downstream, as was the case in
Figure 2b. Relative to the uniform precipitation scenario,
the ridge-valley relief in the zone of increased precipitation
decreases by 12%, whereas the rock uplift rate increases by
160%.
[29] The numerical model and the simpler trellis model

exhibit the same fundamental behavior: uniform precipita-
tion results in nonuniform deformation and erosion; non-
uniform precipitation results in a relatively strong erosion
and rock uplift response and a very weak topographic
response. As we show in the next two sections, these results
can be understood by examining the trellis model in greater
detail.

5. Understanding the Response to Uniform
Precipitation

[30] In this section, we explain the response to uniform
precipitation by exploiting the relationship between ridge-

Figure 4. Trellis model. (a) Planform view of the trellis
model. Main and tributary channels are shown by solid
lines, and tributary boundaries are shown by dashed lines.
Main channel elevation is defined at tributary junctions
(gray circles) and is zero at the outlet. Ridge profile
elevation is defined at the upper end of each tributary.
(b) Cross-section view. Mean elevation profile (black
dashed line) is the average of the main channel and ridge
elevations. Ridge-valley relief is the difference between the
main channel and ridge profiles. Circles with black borders
mark the three points used for the perturbation analysis in
section 6.
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valley relief and rock uplift rate. The stream power law
(equation (1)) predicts a positive dependence between
channel slope and erosion rate, regardless of the state of
topography (2/3 � n � 2 [Whipple and Tucker, 1999]). At
topographic steady state, equation (1) can be rearranged to
express the channel slope in terms of the vertical rock
velocity at the surface, u:

s ¼ u

k

� �1=n
q�m=n: ð5Þ

Thus a higher rock uplift rate results in a higher tributary
channel slope, which integrates to yield an increased ridge-
valley relief [e.g., Whipple and Tucker, 1999]. Note that this
relationship breaks down when the ‘‘tributary’’ consists
only of a threshold hillslope. This case arises when rock
uplift rates outpace the erosive potential of the fluvial
network; however, we do not consider this case any further
in this paper. The important aspect of the positive
dependence, or mapping, between rock uplift rate and
ridge-valley relief is that, if one demonstrates the existence
of bounds on the ridge-valley relief, one also demonstrates
the existence of bounds on the rock uplift rate.
[31] The simple geometric constraint of equation (4)

makes it possible to derive minimum and maximum bounds

on ridge-valley relief (also see Figure 4b). For a critical
wedge with mean elevation, z, the minimum possible ridge-
valley relief is zero (i.e., z = z), and the maximum is equal to
two times the mean elevation (i.e., z = 0). Importantly, both
bounds go to zero at the toe. It follows that the actual ridge-
valley relief must be zero at the toe and increase away from
it. In the trellis model, this relief is maintained by tributaries
of constant width that experience only one rock uplift rate.
Therefore, if relief must increase away from the toe, rock
uplift rates must also increase away from the toe. Thus,
within this framework, the patterns of ridge-valley relief,
rock uplift and erosion rate are inherently nonuniform.
[32] Similar reasoning explains the coincidence of the

maxima in rock uplift rate and ridge-valley relief. By
definition, the maximum in relief should occur where the
derivative of relief with respect to x, Dr/Dx, equals zero.
Taking the difference of equation (4) and rearranging yields

Dri

Dx
¼ 2

Dzi

Dx
�Dzi

Dx

� �
; ð6Þ

where the first term on the right-hand side is simply the
taper angle of the wedge. The maximum in relief occurs
where the right-hand side of equation (6) is zero, i.e., where
the main channel slope matches the taper angle (Figure 5a).
Given the positive relationship between ridge-valley relief

Figure 6. Results from the trellis model for nonuniform
precipitation. (a) Main channel, ridge, and mean elevation
profiles for an eightfold increase in precipitation rate
midway between the divide and toe. (b) Rock uplift rate
profile for the same wedge. Parameter values are the same
as in Figure 5. See caption of Figure 5 for more information.

Figure 5. Results from the trellis model for uniform
precipitation. (a) Channel, ridge, and mean elevation
profiles for a one-sided wedge under uniform precipitation.
Parameter values are m = 1/2, n = 1, k = 3.47 � 10�6 m�1/2

yr�1/2, sc = 45�, p = 1 m/yr, a taper angle of 1.5�, and an
accretionary flux of 100 km2/Ma. (b) Rock uplift rate profile
for the same wedge.
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and rock uplift rate, it follows that the rock uplift rate has a
maximum at the same location (Figure 5b).
[33] The results of this analysis emphasize the importance

of the relationship between ridge-valley relief and rock
uplift rate. Nonuniform bounds on relief imply a nonuni-
form rock uplift rate pattern. This association should be
fairly general. It requires only (1) a critical topographic form
that increases from the toe and (2) a positive relief–rock
uplift relationship. Implications for natural systems, where
these assumptions might not strictly hold, are considered in
the discussion.

6. Understanding the Response to Nonuniform
Precipitation

[34] With further simplification of the landscape, we can
determine the responses of rock uplift rate and ridge-valley
relief to a local change in precipitation. We reduce the
landscape to three points (circled points in Figure 4b): a
point on the ridge, a point below at the main channel-
tributary junction, and a fixed point farther downstream on
the main channel. We consider a scenario in which the
precipitation rate is increased within the tributary basin by
an amount Dp. The increase in precipitation rate is repre-
sented in the main channel by an increase in water discharge
of Dq. It is important to note that the fractional increase in
the main channel discharge, Dq/q, is less than or equal to
the fractional change in precipitation rate, Dp/p, because the
main channel discharge integrates over an area larger than
an individual tributary basin.
[35] The changes in erosive potential within the tributary

basin and along the main channel generate a fractional
change in the rock uplift rate, Du/u, which in turn influen-
ces both the main channel elevation and the ridge-valley
relief. In Appendix B, we derive expressions for the
responses of the main channel elevation, Dz, and the
ridge-valley relief, Dr:

Dz ¼ gz
Du

u
� m

Dq

q

� �

i ii

ð7Þ

and

Dr ¼ gr
Du

u
� m

Dp

p

� �
:

iii iv

ð8Þ

The responses of main channel elevation and ridge-valley
relief can be expressed as straightforward functions of the
difference between the tectonic and erosional forcing (terms
ii and iv), multiplied by a sensitivity factor (terms i and iii).
The sensitivity factor gz is proportional to the elevation gain
of the main channel over one half of a tributary:

gz ¼
1

n
s
Wtrib

x

2
; ð9Þ

where s is the unperturbed main channel slope and Wx
trib is

the across-strike width of the tributary basin. The sensitivity

factor gr is proportional to the fluvial relief, rf, of the
tributary (equation (B10)):

gr ¼
1

n
rf : ð10Þ

Because the elevation gained on the main channel is
typically small relative to the fluvial relief on the tributary
[e.g., Whipple et al., 1999], gr should be much greater than
gz (term iii � term i). In other words, we expect that the
ridge-valley relief is much more sensitive to differences
between tectonic and erosional forcing than is the main
channel elevation.
[36] For an increase in erosive potential, the tendency of

both the main channel elevation and ridge-valley is to lower.
However, maintenance of the critical topographic form
requires that Dz = 0: hence changes in the main channel
elevation and ridge-valley relief must be of opposite sign.
Taking the difference of equation (4) and settingDz equal to
zero yields the exact relationship

Dz ¼ �Dr=2: ð11Þ

Equation (11) requires that the rock uplift rate must change
for a balance to be struck between the requirement of a
critical taper and the changes in erosive potential. Given that
the fractional change in the main channel discharge (Dq/q)
is less than or equal to the fractional increase in precipitation
within the tributary (Dp/p), the rock uplift response can be
simplified to

m
Dq

q
� Du

u
� m

Dp

p
: ð12Þ

Thus the fractional change in rock uplift rate is bounded by
m times the fractional changes in the main channel
discharge and the tributary precipitation rate. The outcome
of the first inequality in equation (12) is that the slope and
elevation of the main channel must increase (Dz > 0). The
outcome of the second inequality is that the ridge-valley
relief must decrease (Dr < 0). Both of these predictions are
observed in the numerical and trellis model results (see
Figures 3a, 3b, 6a and 6b).
[37] Equations (7) through (11) are also strong constraints

on the magnitudes of the ridge-valley relief and rock uplift
rate responses. Referring to the labels given to the different
terms in equations (7) and (8), equation (11) requires that
(i) � (ii) and (iii) � (iv) differ by only a factor of two.
However, as noted above, there is good reason to expect that
(iii) � (i). The only way these two things can be true is if
(iv) 	 (ii). Therefore it must be true that Du/u is much
closer in value to mDp/p than to mDq/q. Thus a local
variation in precipitation is expected to be accommodated
by a relatively large rock uplift response and a small relief
response.
[38] The final result of this analysis concerns the scale of

the rock uplift rate response. In the trellis model, it is almost
completely limited to the extent of the zone of increased
precipitation. However, within the main channel, the rela-
tive increase in discharge is roughly the same downstream
as it is within the zone of increased precipitation; that is, the
erosional forcing of the main channel is about the same.
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However, the tributary within the zone of increased precip-
itation experiences eight times more precipitation than does
the downstream tributary basin; that is, the erosional forcing
on the tributary is very different. The result is that the rock
uplift rate increases dramatically within the zone of in-
creased precipitation and is barely changed outside of that
zone. Thus, in this framework, tributaries play a crucial role
in determining both the length scale and magnitude of the
rock uplift rate response. We address the geologic plausi-
bility of this result in the discussion section.
[39] Up to this point, the nonuniform pattern of precipi-

tation employed in this paper has been useful for demon-
strating the fundamental difference between the topographic
and erosion rate responses to spatial variations in precipi-
tation. However, it is important to understand the effects of
realistic patterns of precipitation on realistic drainage net-
works. In the following section, we quantify the influence of
a twofold variation in precipitation on the erosion rate
pattern on the western side of the Olympic Mountains of
Washington State.

7. Application to the Olympic Mountains

7.1. Setting

[40] The Olympic Mountains are located along the Juan
de Fuca–North America plate boundary in the northwestern
corner of the continuous United States (Figure 7) and are the
result of at least thirty million years of accumulation and
accretion of sediments onto the North American plate
[Tabor and Cady, 1978]. The topography of the range
represents a significant orographic barrier to moisture-laden
air coming from the Pacific Ocean and results in a strong
rain shadow, with precipitation rates doubling from the

western coast to the topographic crest, Mount Olympus,
and then decreasing sharply to the east [Anders et al., 2007].
The high topographic relief and high precipitation rates are
associated with fairly rapid erosion (
1 km/Ma in the
interior of the range) that, sustained over geologic time-
scales, has led to a significant amount of exhumation (10–
15 km in the interior of the range) [Brandon et al., 1998].
Because of this combination of factors, the Olympic Moun-
tains are well suited as a setting for investigations into the
roles of tectonics, erosion and climate in orogen evolution
[e.g., Brandon et al., 1998; Willett, 1999a; Montgomery and
Greenberg, 2000; Pazzaglia and Brandon, 2001; Batt et al.,
2001]. Furthermore, because many of the assumptions
underlying our analyses are reasonably met there, the
Olympic Mountains are a particularly apt setting for this
study. In the next few paragraphs, we provide supporting
evidence—and caveats—about four key assumptions that
are necessary for further analysis of the Olympic Moun-
tains: two-dimensional, plane strain deformation; steady
state topography; fluvially dominated erosion; and a steady
precipitation pattern.
[41] In the vicinity of the Olympic Peninsula, conver-

gence between the Juan de Fuca plate and the Cascadia
forearc, which extends from northern California through the
Oregon Coast Range and the Olympic Mountains, occurs at
a velocity of 30–35 km/Ma and an azimuth of approxi-
mately 55�–60� E [Miller et al., 2001; Wang et al., 2003].
Submarine features of the margin, such as the deformation
front and the continental shelf, have azimuths of about 160�
and are nearly orthogonal to the convergence direction,
indicating that accretion and deformation occur primarily
in the across-strike plane. The broad domal topography
and radial drainage network of the Olympic Mountains
(Figure 8a) seem at odds with this scenario, and indeed,
there are suggestions from paleomagnetic and geodetic
studies that a sizable amount of along-strike convergence
might be accommodated across the range [e.g., Wells, 1990;
McCaffrey et al., 2000; Miller et al., 2001]. However, in
this analysis, we adopt the perspective of Brandon and
Calderwood [1990] that the domal form of the range is the
result of the bend in the subducting Juan de Fuca slab
(Figure 7), not along-strike convergence. We focus on the
western flank of the range, where the relevant stresses due
to topography and to coupling with the subducting slab are
aligned with the general orientation of major drainage
networks and hence the major direction of surface mass
transport.
[42] Both geomorphic and thermochronometric studies

have shown that the pattern of erosion in the Olympic
Mountains has remained relatively steady since 10–14 Ma
[e.g., Brandon et al., 1998; Pazzaglia and Brandon, 2001;
Batt et al., 2001; D. B. Stolar et al., Using low-temperature
thermochronometers to determine the long-term erosion rate
pattern in the Olympic Mountains of Washington State,
manuscript in preparation, 2007, hereinafter referred to as
Stolar et al., manuscript in preparation, 2007]. The more
straightforward implication of these findings is that there is
a persistent, if approximate, balance between rock uplift and
erosion in the range; that is, topography is in a large-scale
steady state. The more subtle implication is that Quaternary
glaciation has not had a measurable influence on long-term
erosion rates, at least as inferred from low-temperature

Figure 7. Cascadia margin. The Olympic peninsula is
bounded by the semitransparent box. The Olympic accre-
tionary wedge is shown in dark gray and abuts the Crescent
terrane to the north, east, and south. The white diamond
denotes the location of Mount Olympus. Small black circles
mark the location of Holocene volcanoes, which delineate
the Cascade volcanic arc. NA, North American plate; PA,
Pacific plate; JF, Juan de Fuca plate. Orientations of the
relative plate motions are shown for the PA-JF and JF-NA
boundaries.
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thermochronometry; that is, erosion is dominated by fluvial
and hillslope processes. Studies of the topography of the
Olympic Mountains provide both supporting and conflicting
evidence for the latter implication. Montgomery [2002]
argued that the most significant modification to the land-
scape by Quaternary glaciation was a widening, rather than
a deepening, of major valleys. However, Montgomery and
Greenberg [2000] estimated that isostatic rebound due to
valley deepening by glacial erosion during the Quaternary
could account for up to 30% of the elevation of Mount
Olympus (2427 m). Though we recognize that the assump-
tions of topographic steady state and fluvially dominated
erosion are unlikely to hold on a point-by-point basis, they
seem appropriate for this analysis because, as demonstrated
below, the general results depend on the large-scale trends,
not the details, in the topography of the Olympic Mountains.
[43] Estimates of the modern-day pattern of precipitation

(Figure 8b) come from a mesoscale forecast model, MM5,
from which Anders et al. [2007] analyzed daily precipitation
rates on 4.5 km grid for the time period of 1999–2004. In
general, the variation in precipitation from the wetter,
western side to the drier, eastern side is typical of orographic
precipitation in coastal midlatitude settings [e.g., Roe,
2005]. Anders et al. [2007] found reasonable agreement
between the forecast predictions of precipitation and meas-
urements from an high spatial resolution gauging network
on a ridge on the western side of the range. Importantly,
they also found that the spatial variations in precipitation
during large storm events, which occurred under a wide
range of climatological conditions, closely mimicked the
multiyear precipitation pattern shown in Figure 8b. From
this, Anders et al. [2007] inferred that the precipitation
pattern is a relatively robust feature of the topography and
midlatitude setting of the Olympic Mountains, i.e., that
Figure 8b is a reasonable estimate of the precipitation
pattern over geologically relevant timescales.
[44] In the remainder of this section, we consider the

patterns of topography and precipitation on the western side
of the range. To describe these patterns in a way similar
to previous sections, we delimit an analysis domain
that encompasses the Hoh, Clearwater and Queets drainage
basins, as well as two small basins near the coast (Figure 8a).
Within the analysis domain, we construct a set of 5-km-wide
swaths that are oriented parallel to the plate boundary and
calculate the minimum, mean and maximum values of
elevation and precipitation within each swath. These values
are then projected onto a transect that runs from the western
coast through Mount Olympus (Figure 8c).
[45] Mean precipitation across the analysis domain

increases from 
2.5 m/yr at the coast to 
5 m/yr at Mount
Olympus. Mean elevation increases gradually away from
the coast to the divide with a slope of 1�. Ridge-valley
relief, which we define as the difference between the
maximum and minimum elevation profiles, also increases
away from the coast and reaches a maximum at Mount
Olympus.
[46] These observations allow for a preliminary predic-

tion for the pattern of erosion rate on the western side of the
range. Given the proposed relationship between erosion rate
and ridge-valley relief for the case of uniform precipitation,
the increase in ridge-valley relief toward Mount Olympus
suggests, by association, that erosion rates also increase

Figure 8. Olympic peninsula. (a) The 100-m digital
elevation model (DEM) of the Olympic peninsula. The
analysis domain is outlined by the dashed line. Transect is
across the western side of Mount Olympus. (b) Contour
map of mean annual precipitation as predicted by MM5, a
mesoscale forecast model, for the period of 1999–2004
[Anders et al., 2007]. (c) Minimum, mean, and maximum
profiles of elevation and mean precipitation rate across the
analysis domain. Here p is the mean precipitation rate over
the entire analysis domain (3.86 m/yr), pbg is an estimate of
the precipitation rate in the absence of orographically
enhanced precipitation, and p* is the effective mean
precipitation rate (4.3–4.45 m/yr for m and n values used
here; see text for further explanation). Pluses mark the
locations along the transect where the mean precipitation
profile (bold gray line) is equal to p*. Triangle denotes the
location of Mount Olympus.
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toward Mount Olympus [e.g., Montgomery and Brandon,
2002]. Furthermore, the doubling of precipitation rates
across the western side of the range should amplify the
erosion rates near Mount Olympus. Thus there are two
factors, albeit interdependent, that favor an increase in
erosion rate toward Mount Olympus. However, can we
determine how much of an influence the precipitation
pattern has on the predicted erosion rate pattern?

7.2. Methodology

[47] We address this question with a methodology similar
to that used in the trellis model. In outline, we assume that
the observed mean elevation profile (Figure 8c) is the
critical topographic form of the orogen and, using both
the observed pattern of precipitation and several uniform
patterns of precipitation, we solve for the erosion rate
patterns that produce the observed mean elevation profile.
Fitting the mean elevation profile does not guarantee that
the predicted ridge-valley relief matches the observed ridge-
valley relief, so we search for the combinations of m and n
that best explain the ridge-valley relief. Then, for several
acceptable combinations of m and n, we compare the
predicted erosion rate patterns to determine the influence
of the nonuniform pattern of precipitation. Finally, we
compare the predicted erosion rate patterns to two inferred
erosion rate patterns.
[48] In detail, we assume that the erosion rate pattern

along the transect is a step function composed of 5-km-wide
segments. Note that the results of the model do not depend
much on the width of the segments. Within each segment,
the erosion rate is constant. The mean erosion rate along the
transect is assumed to be 0.5 km/Ma, which is representa-
tive of erosion rates on the western side of the range derived
from river incision rates and low-temperature thermochron-
ometer data [e.g., Brandon et al., 1998; Pazzaglia and
Brandon, 2001; Batt et al., 2001]. We extract the drainage
network from the filled 100-m digital elevation model
(DEM) and, for a given pattern of precipitation, calculate
the mean annual water discharge at every point. Given the
relatively homogeneous lithology of the accreted rocks that
comprise the western side of the range [Tabor and Cady,
1978], we assume that the bedrock erodibility, k, is constant
over the entire domain. In the discussion section, we
consider how spatial variations in bedrock erodibility might
influence the erosion rate pattern.
[49] We assume that all hillslopes in the model are

characterized by a gradient, sh, that is constant over the
length of the hillslope, much like was assumed in previous
sections. In the Olympic Mountains, the mean local slope
averaged over many square kilometers varies significantly,
from 10� near the western coast to 30� near Mount Olympus
[Montgomery, 2001]. We account for this variation by
assuming that sh is the mean hillslope gradient within each
swath as calculated from the 100-m DEM. The local slope
of any point i in the jth swath is then given by

si ¼ min
ej

k

� �1
n

q
�m

n

i ; shj

� �
: ð13Þ

The elevation within the analysis domain is calculated by
integrating equation (13) from each drainage basin outlet,
which is assumed to be fixed at sea level. For a predicted

planform topography, the mean elevation within each swath
can be calculated and compared to the observed mean
elevation (Figure 8c). As in the trellis model, we use the
Newton-Raphson method to solve for the erosion rate
profile that agrees with the observed mean elevation profile.

7.3. Results

[50] We first present results using the observed pattern of
precipitation. For a range of m and n values (1/4 � m � 1,
1/2 � n � 2), we solve for the erosion rate pattern and
compute the root-mean-square (RMS) misfit between the
observed and predicted ridge-valley relief. Because the units
of k are dependent on m, the value of k is adjusted for each
combination of m and n such that the mean erosion rate
across the transect is always 0.5 km/Ma.
[51] A contour plot of the RMS misfit is shown in

Figure 9a, with lighter colors representing a closer match
to the observed ridge-valley relief. The minimum misfits are

120 m, and the mean ridge-valley relief is 1050 m
(Figure 9b). The relatively small misfits suggest a reason-
able consistency between the topography of the Olympic
Mountains and a steady state landscape in which erosion
is dominated by fluvial and hillslope processes [e.g.,
Pazzaglia and Brandon, 2001].
[52] Misfit in relief is almost entirely dependent on the

ratio of m and n, not the individual values. The best fit value
of m/n is 
0.5. An equivalent exercise using a different
definition of relief (relief is equal to the standard deviation
of elevation within each swath) yields a best fit m/n value of

0.6. The observed ridge-valley relief and the relief pre-
dicted for several combinations of m and n are shown in
Figure 9b. Note that all of the predicted patterns of relief in
Figure 9b are from predicted landscapes whose mean
elevation profile is identical to the observed profile. Thus
there is a strong suggestion that m/n values in the vicinity of
0.5 can describe both the mean topography and the plan-
form topography of the western side of the Olympic
Mountains.
[53] Next, we calculate the erosion rate patterns resulting

from the observed pattern of precipitation and three uniform
patterns of precipitation. Predictions from the different
precipitation scenarios allow us to focus on the influence
of spatial variations in precipitation on spatial variations in
erosion rate, i.e., to connect our analysis of the Olympic
Mountains to the results of the two previous sections. For
uniform precipitation patterns, we consider a low back-
ground precipitation rate (pbg = 2 m/yr), which is a rough
estimate of the precipitation rate in the absence of an
orographic effect (Figure 8b), the observed mean precipita-
tion rate (p = 3.86 m/yr), and the effective mean precipita-
tion rate (p* = 4.3–4.45 m/yr depending on the values of m
and n). The distinction between the observed and effective
mean precipitation rates is necessary because, in our model,
the calculation using the observed mean precipitation rate
yields a mean erosion rate that is lower than 0.5 km/Ma (e =
0.46–0.48 km/Ma depending on the values of m and n).
This is due to an interesting feature of the precipitation
pattern in the Olympic Mountains: precipitation rates on
the ridges are typically higher than those in the valleys
(Figure 8b) [Anders et al., 2007]. Because fluvial relief is
more sensitive to the precipitation rate close to the divide
than near the outlet [Roe et al., 2003], the effective mean

F04002 STOLAR ET AL.: PATTERNS OF TOPOGRAPHY AND EROSION RATE

10 of 17

F04002



precipitation rate required to erode at a certain rate is greater
than the observed mean precipitation rate.
[54] In Figure 10, we show the predicted erosion rate

patterns for three different fluvial erosion laws with m/n
values near 0.5: the unit shear stress model (m = 1/3, n = 2/3),
the unit stream power model (m = 1/2, n = 1) and the model
of Finnegan et al. [2004] (m = 5/8, n = 19/16). For each
combination of m and n there are four predictions of the
erosion rate pattern, one for each precipitation scenario (the
observed precipitation pattern and uniform precipitation
rates of pbg, p, and p*). As expected, all predicted erosion
rates increase from the coast toward Mount Olympus.
[55] At the broadest scale, the effect of the topography of

the Olympic Mountains on precipitation is to increase the
mean precipitation rate from a background precipitation,
here assumed to be pbg, to the observed mean precipitation,
p. Predicted mean erosion rates for the background

Figure 9. Comparison of predicted and observed topo-
graphy. (a) RMS misfit of the predicted ridge-valley relief
as a function of the fluvial erosion law parameters m and n
(equation (1)). Lighter shading represents lower misfit.
(b) Observed and predicted patterns of ridge-valley relief for
different values of m/n. Small variations in the width of each
predicted curve (in gray) reflect the variations due to
assuming different values of n (2/3, 1, and 19/16). Triangle
denotes the location of Mount Olympus.

Figure 10. Predicted erosion rate patterns for the observed
pattern of precipitation (black lines) and three uniform
precipitation rates: a representative background precipitation
rate (pbg, black dotted lines), the observed mean precipitation
rate (p, dashed dark gray lines), and the effective mean
precipitation rate (p*; solid gray lines) for three different
fluvial erosion laws: the unit shear stress model (m = 1/3, n =
2/3), the unit stream power model (m = 1/2, n = 1), and the
model of Finnegan et al. [2004] (m = 5/8, n = 19/16). The
mean erosion rate is 0.5 km/Ma in the observed precipitation
and effective mean precipitation scenarios and lower than
0.5 km/Ma in the observed mean precipitation and back-
ground precipitation scenarios. For each combination of m
and n, the value of k is determined for the observed
precipitation scenario, such that the mean erosion rate is
0.5 km/Ma and is kept the same for the other precipitation
scenarios. For the m, n values of (1/3, 2/3), (1/2, 1), and
(5/8, 19/16), the values of k are 1.22 � 10�5, 1.73 � 10�6,
and 3.15 � 10�7, respectively, where the units of k are
m1–3m yrm–1. Triangle denotes the location of Mount
Olympus.
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precipitation and observed mean precipitation scenarios are
0.31–0.39 km/Ma and 0.46–0.48 km/Ma, respectively.
Thus the relative increase in mean erosion rate due to
orographically enhanced precipitation is roughly 25–50%.
A comparison of the mean erosion rates determined for the
observed and effective mean precipitation scenarios (0.46–
0.49 km/Ma and 0.5 km/Ma, respectively) suggests that the
nonuniform weighting of precipitation on relief and erosion
rate, described above, has a relatively small impact (<10%)
on the erosion rate pattern.
[56] The influence of spatial variations in precipitation

rate on the erosion rate pattern can be determined by
comparing predictions from the observed precipitation and
effective mean precipitation scenarios (black lines vs. light
gray lines in Figure 10). Importantly, the differences in
erosion rate between the two scenarios are proportionately
small everywhere along the transect. Simply put, spatial
variations in precipitation rate appear to have relatively little
influence on the predicted erosion rate pattern. Thus we
conclude that it is the amount, not the spatial variation, of
orographic precipitation that has a significant influence on
the erosion rate pattern in the Olympic Mountains. This
result is entirely consistent with results from the numerical
and trellis models; in those models, the large erosion rate
response was caused by a 700% increase in precipitation
rate, whereas in the case of the Olympic Mountains, the
perturbations in precipitation and hence the predicted ero-
sion rate responses are much smaller.
[57] Next, we compare predictions of the Olympic Moun-

tains model with those of the trellis model to determine
whether the simple principles derived from trellis model
hold for a more realistic precipitation pattern and drainage
network. We begin by noting that the erosion rate patterns
for the observed precipitation and effective mean precipita-
tion scenarios intersect where the observed mean precipita-
tion profile (bold gray line in Figure 8c) is approximately
equal to p* (see plus signs in Figure 8c). For instance, near
Mount Olympus, the observed precipitation rate is greater
than the effective mean, and the erosion rate predicted for
the observed precipitation scenario is greater than that
predicted for the effective mean precipitation scenario.
The opposite is true near the coast, where erosion rates
are predicted to be higher in the effective mean precipitation
scenario than in the observed precipitation scenario. These
results match the results of previous sections: locally higher
precipitation rates lead to locally higher erosion rates. Given
this agreement, we can use the results in Figure 10 to
quantitatively test whether the expressions derived from
the trellis model (equations (12) and (B15)) are also valid
for the Olympic Mountains.

[58] We define the difference between the observed
precipitation rate, p, (bold gray line in Figure 8c) and the
effective mean precipitation rate, p*, at a point along the
transect as

Dp

p
¼ p� p*

p*
; ð14Þ

and the difference in the erosion rate as

De

e
¼ e� e*

e*
; ð15Þ

where e is the erosion rate for the observed precipitation
pattern and e* is the erosion rate for the effective mean
precipitation scenario. As defined by equations (14) and
(15), there are negative perturbations in the precipitation
and erosion rates near the coast and positive perturbations
near Mount Olympus. In Table 1, we show the values of the
precipitation forcing (mDp/p) and the predicted erosional
response (De/e) at the coast and at Mount Olympus for the
three fluvial erosion laws considered thus far. In general, the
erosional response is roughly equal to the precipitation
forcing (De/e � mDp/p), suggesting that the simple trellis
model describes the Olympic Mountains reasonably well.
From this agreement, we infer the differences in drainage
network and precipitation pattern between the trellis model
and the model of the Olympic Mountains have only a small
effect on the predicted erosion rate pattern.
[59] Finally, we compare predictions from the model of

the Olympic Mountains to two inferences of the long-term
erosion rate pattern [Pazzaglia and Brandon, 2001; Stolar et
al., manuscript in preparation, 2007] (Figure 11). The
inferred curves have been determined from overlapping
data sets: the western 35 km of the Pazzaglia and Brandon
[2001] curve are mainly constrained by late Quaternary
river incision rates; the eastern 35 km of the curve are
constrained by apatite fission track (AFT) data; the Stolar et
al. (manuscript in preparation, 2007) curve is constrained by
many of the same AFT data, as well as zircon fission track
data and apatite (U-Th)/He data. Note that the Stolar et al.
(manuscript in preparation, 2007) curve is a smoothed
regression of erosion rates determined from separate inver-
sions of the three different thermochronometer data sets. For
the predictions, we show the range of erosion rates for the
observed precipitation pattern and the same three combina-
tions of m and n presented in Figure 10. Two sets of
predictions, each with a different mean erosion rate, are
shown to allow comparison with the inferred erosion rate
patterns.
[60] As shown in Figure 11, the inferred erosion rate

patterns strongly support the theoretical expectations devel-
oped in this study that erosion rates are lower near the coast
and higher in the interior of the range. The most notable
discrepancy between the inferred and predicted erosion rate
patterns is in the location of the maximum erosion rate: the
maximum erosion rate from Pazzaglia and Brandon [2001]
is offset approximately 20 km to the west of the other
maximum erosion rates. However, the geologic significance
of this offset is debatable. Stolar et al. (manuscript in
preparation, 2007) have argued that the thermochronometer
data available on the western side of the Olympics are not

Table 1. Precipitation Forcing and Predicted Erosional Response

at the Coast and Mount Olympus

Fluvial Erosion
Law Exponents
(Equation (1))

Coast Mount Olympus

m
Dp

p
, %

De

e
, % m

Dp

p
, %

De

e
, %

m = 1/3, n = 2/3 �14.6 �16.9 5.4 5.3
m = 1/2, n = 1 �22.6 �21.9 6.8 7.5
m = 5/8, n = 19/16 �28.6 �31.5 7.7 7.8
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sufficient to resolve a local maximum in erosion rate at
35 km and that the data only resolve a broad increase in
erosion rate from the coast to Mount Olympus. Further-
more, the lack of detailed agreement is not surprising given
the host of assumptions and uncertainties behind the in-
ferred and predicted erosion rate patterns. Whether the
disagreement is real or the reasons are knowable are topics
that merit future scrutiny.

8. Discussion

[61] We first discuss the main results of our work and
consider the generality of the underlying assumptions.
Second, we compare results from different model frame-
works to understand the length scales of the responses to
nonuniform precipitation. Third, we argue that our results
can be extended to some time-dependent scenarios.

8.1. Response to Uniform Precipitation

[62] Our results suggest that the rock uplift and erosion
rate patterns in a critical orogen should be nonuniform even
when forced by uniform precipitation. This is a natural
consequence of linking an increasing critical topographic
form with a branching drainage network: maintenance of
the critical topographic form requires a nonuniform pattern
of ridge-valley relief and hence a nonuniform pattern of
rock uplift rate.
[63] The most important assumptions underlying this

result are: (1) the critical topographic form increases from

the toe toward the divide and (2) the relationship between
ridge-valley relief and rock uplift rate is positive and
relatively constant across the orogen. Settings in which
the first assumption is violated are likely to be characterized
by local deposition, not erosion, [e.g., Fuller et al., 2005]
and are therefore not relevant to this study.
[64] The second assumption seems appropriate for non-

glaciated landscapes, as many fluvial and hillslope erosion
laws predict a positive slope-rock uplift rate relationship at
or near topographic steady state [e.g., Whipple and Tucker,
1999; Tucker and Whipple, 2002; Tucker, 2004; Gasparini
et al., 2006; Roering et al., 2001]. Recent work on modeling
erosion by debris flows [Stock and Dietrich, 2006] suggests
a positive relationship between channel slope and erosion
rate and hence rock uplift rate. Even in glaciated landscapes,
only a very efficient ‘‘glacial buzz saw’’ would be capable
of fundamentally changing the relief-rock uplift rate
relationship [e.g., Brozovic et al., 1997; Mitchell and
Montgomery, 2006]. It is possible that the drainage network
might be configured such that generation of ridge-valley
relief (and rock uplift rate) is favored near the toe relative to
near the divide. However, given the general agreement
between the results of the trellis model and the analysis of
the Olympic Mountains (see Table 1), we do not expect that
details of the drainage network, such as sinuosity and
nonperpendicular tributary junctions, are a major control
on the erosion rate pattern.
[65] It is also possible that the spatial pattern of substrate

erodibility could be an important control on the erosion rate
pattern. Stock and Montgomery [1999] demonstrated that k
varies between different lithologies by several orders of
magnitude. The results of Dadson et al. [2003] suggest that
significant variations in k can influence the orogen-scale
pattern of erosion. They showed that short-term erosion
rates in Taiwan are extremely high where poorly consoli-
dated foreland sediments are being deformed. In the case of
the Olympic Mountains, if the rocks near the coast are much
more easily eroded than rocks near Mount Olympus, it is
conceivable that the erosion rate is uniform across the range
or, perhaps, that the erosion rate decreases toward Mount
Olympus. The available inferences of the erosion rate
pattern would suggest otherwise, but the influence of
erodibility on the erosion rate pattern is an intriguing
possibility, and further work is needed to constrain how
bedrock erodibility varies within individual orogens.

8.2. Response to the Box Car Pattern of Precipitation

[66] In the models presented here, the box car pattern of
precipitation generates a weak topographic response and
much stronger deformation and erosion rate responses. This
follows from a large difference in the sensitivities of the
main channel and ridge-valley relief to changes in the local
precipitation rate. Because the critical topographic form
requires that changes in the main channel elevation and
ridge-valley relief be of similar magnitude and opposite sign
(Dz = �Dr/2), a large change in rock uplift rate is required
to offset a change in the local precipitation rate. In other
words, the response of the tectonic-erosional system is a
compromise between the topography, which has a tendency
to lower, and the critical topographic form, which does not
allow the mean elevation to change.

Figure 11. Comparison of inferred and predicted erosion
rate patterns. Inferred erosion rate patterns are from
Pazzaglia and Brandon [2001] (solid black line) and Stolar
et al. (manuscript in preparation, 2007) (dashed black line).
Range of erosion rates shown for m,n = (1/3, 2/3), (1/2, 1),
and (5/8,19/16) and for e = 0.5 km/Ma (dark gray shading)
and e = 0.7 km/Ma (light gray shading) to allow comparison
with the inferred curves. Inferred profiles were projected
from their original orientation onto the transect shown in
Figure 8. Triangle denotes the location of Mount Olympus.
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[67] These results rest primarily on the assumption that
the stream power law describes erosion within the channel
network. Importantly, the stream power law limits the
channel response to one degree of freedom, the channel
slope. Allowing for additional degrees of freedom (e.g.,
channel width and sediment cover) would presumably
decrease the sensitivity of both the main channel elevation
and ridge-valley relief to changes in precipitation; that is,
the relief and rock uplift responses would be damped.
[68] Consideration of sediment cover [e.g., Sklar and

Dietrich, 2004; Gasparini et al., 2006], for instance, might
also change the sign of the slope response to a change in
precipitation. Depending on spatial variations in sediment
discharge and capacity, it is conceivable that an increase in
precipitation might lead to (1) an increase in erosion
potential in main channel and a decrease in the tributary
or (2) a decrease in erosion potential in the main channel
and an increase in the tributary. In either case, this would
lead to important differences in the tectonic and erosional
response.

8.3. Length Scale of the Response to Nonuniform
Precipitation

[69] In natural settings, the response to nonuniform pre-
cipitation should depend on length scales inherent to the
climatic and tectonic systems. As one may have expected,
the trellis and numerical models give different predictions,
with the difference being due to how deformation is
described in the two models. In the trellis model, the scale
of the rock uplift response is set by the tributary basin width
(see Figure 6b). This is a consequence of requiring that the
linear mean elevation profile be maintained without speci-
fying the operant tectonic processes (i.e., there is no length
scale inherent to the tectonic system).
[70] The numerical model contains a more realistic

description of brittle deformation, which imposes a mini-
mum length scale to the tectonic response. As shown in
Figures 2c and 2d, deformation is characterized by sets of
conjugate shear zones that meet along the basal detachment.
In a homogeneous, plastic material, the distance between
these shear zones is determined by the crustal thickness and
the orientation of the shear zones. This is illustrated in
Figure 3c, which shows that the erosionally induced
increases in deformation and erosion rate occur within a
region that is bounded by two shear zones. Importantly, the
width of this region is greater than the width of the zone of
increased precipitation. Thus the minimum length scale of
the response is set by the tectonic system. Because the
tectonic model does not allow for description of faults with
history-dependent material strengths, we cannot casually
extend this result to natural settings. However, we expect
natural structures, which represent persistent and significant
mechanical heterogeneities, to have a strong influence on
the scale and magnitude of the tectonic response to climatic
forcing.

8.4. Time Dependence of the Erosion Rate Pattern

[71] Though we have limited our analyses to steady state
orogens, our results should also be applicable to some transient
systems. For instance, with the one-dimensional model pre-
sented in section 3, it is very simple to make the connection
between the steady state and transient cases. Equation (3)

states a relationship between the erosion rate and the slope of
the critical topographic form (tan a). This relationship follows
directly from the stream power erosion law (equation (1)) and
does not require an assumption of topographic steady state.
Thus, regardless of whether the wedge grows self-similarly
(da/dt = 0) or nonself-similarly, the erosion rate pattern should
always be given by equation (3).
[72] A similar result can be argued for in more realistic

tectonic-erosional systems. The mean topography of the
numerical orogen grows self-similarly during much of the
approach to steady state [Stolar et al., 2006]. The numerical
orogen also obeys the width-scaling law of Whipple and
Meade [2004] and Roe et al. [2006]. Roe et al. [2006]
demonstrated that the width-scaling law requires that the
erosion rate pattern changes self-similarly as the wedge
changes in size. This implies that the time-dependent
erosion rate pattern must look like the steady state pattern.
Note that this does not preclude self-similar growth of
topography, which only requires a uniform surface uplift
rate pattern, i.e., that rock uplift and erosion rates are
different by the same amount over the orogen. Thus it
is consistent that the time-dependent system exhibit self-
similar mean topography, uniform surface uplift rate, and
nonuniform rock uplift and erosion rates. Though this
simple example demonstrates a possible outcome of an
evolving orogen, the diversity of transient orogens clearly
deserves more attention in the future.

9. Conclusions

[73] Our results indicate that topography plays a crucial
role in the coupling between tectonics and erosion. This is
most evident in the differences between the predictions of the
trellis and one-dimensional models. In the one-dimensional
model, the landscape is not allowed to depart from the critical
topographic form. This constraint on the topography is easily
translated to a constraint on the patterns of erosion and rock
uplift rate, which are very different than those predicted by
the trellis and numerical models. In the latter two models, the
generation of ridge-valley relief has important consequences
for the predicted patterns of erosion rate and deformation:
maintenance of an increasing critical topographic form
requires similar patterns of both ridge-valley relief and rock
uplift rate. Thus spatial variations in erosion rate do not
necessarily imply forcing from climate; this has important
implications for interpreting spatial correlations between
topography, precipitation and exhumation.
[74] Topography is also key to understanding the response

of the tectonic-erosional system to spatial variations in
precipitation. When perturbed by a local increase in precip-
itation, the system maintains the critical topographic form
through a local increase in rock uplift rate, which greatly
dampens the response of the ridge-valley relief. As applied
to the western side of the Olympic Mountains, our model
appears to explain the planform and mean topography and
predicts that the spatial variation in precipitation has only a
small effect on the predicted pattern of erosion rate.

Appendix A

[75] The landscape of the trellis model is composed of
N pairs of matching tributary basins (Figure 4a). The across-

F04002 STOLAR ET AL.: PATTERNS OF TOPOGRAPHY AND EROSION RATE

14 of 17

F04002



strike width of individual tributary basins, Wx
trib, is assumed

to be equal to Wx
trib*, with the exception of the basin nearest

the toe which, to fill space, has a width between
1

2
W

x
trib*

and
3

2
W

x
trib*. For the results presented here, the along-

strike width of the model domain, W
y, scales linearly with

the length of the wedge, Wx, which is suggested by natural
basins [e.g., Hovius, 1996]. Holding Wy constant or
changing the dependency on Wx does not affect the general
results of this analysis.
[76] The elevation of the main channel at the junction

with the ith tributary can be written as a finite sum:

zi ¼ siW
trib
xi =2þ

XN
j¼iþ1

sjW
trib
xj ; ðA1Þ

where i is an integer between one at the divide and N at the
toe and si is the main channel slope. Equation (A1) can be
rewritten using the stream power law (equation (1)) to
express the channel slope:

zi ¼
ui

k

� �1=n
q
�m=n
i W trib

xi =2þ
XN
j¼iþ1

uj

k

� �1=n
q
�m=n
j W trib

xj : ðA2Þ

The discharge in the main channel is

qi ¼
Xi
j¼1

pjW
trib
xj Wy: ðA3Þ

Because the rock uplift and precipitation rates are constant
within individual tributary basins, the ridge-valley relief can
be written as

ri ¼ scyc þ
ZWy=2

yc

ui

k

� �1=n
qi yð Þ�m=n

dy; ðA4Þ

where y is the distance from the tributary divide in the
along-strike direction (0 � y � Wy/2), yc is the position of
the tributary channel head, the first term on the right-hand
side is the hillslope component of the ridge-valley relief, the
second term is the fluvial component of the ridge-valley
relief, and the water discharge in the tributary is

qi yð Þ ¼ piW
trib
xi y:

Equation (A2) and equation (A4) can be substituted into a
modified form of equation (4):

zi � zi þ ri=2ð Þ ¼ 0; ðA5Þ

which can be solved using the Newton-Raphson method.

Appendix B

[77] We impose a perturbation of Dp on the precipitation
rate within a single tributary basin. The linear approxima-

tions of the responses of the main channel elevation and
ridge-valley relief are

Dz ¼ @z

@q
Dqþ @z

@u
Du ðB1Þ

and

Dr ¼ @r

@p
Dpþ @r

@u
Du: ðB2Þ

For the mean elevation to be maintained, the changes in
main channel elevation and ridge-valley relief must be
related by

Dz ¼ �Dr=2: ðB3Þ

[78] The change in main channel elevation is related to
the change in main channel slope, Ds, by

Dz ¼ Ds
W trib

x

2
; ðB4Þ

and equation (B1) can be rewritten in terms of changes in
the main channel slope:

Dz ¼ Wtrib
x

2

@s

@u
Duþ @s

@q
Dq

� �
: ðB5Þ

Rearranging equation (1) and differentiating gives

@s

@u
¼ 1

n

1

u
s ðB6Þ

and

@s

@q
¼ �m

n

1

q
s: ðB7Þ

Substituting these into equation (B1) yields

Dz ¼ 1

n
s
Wtrib

x

2

Du

u
� m

Dq

q

� �
: ðB8Þ

[79] The ridge-valley relief, r, is the sum of the fluvial and
hillslope relief within a tributary basin. The relief on a
threshold hillslope, rh, is

rh ¼
u

k

� �1
m

W trib
x p

� ��1
s
1�n

m
c : ðB9Þ

For m = n, the fluvial relief, rf, is

rf ¼
u

k

� �1
n

W trib
x p

� ��1
ln

Wy

2

� �
� 1

m
ln

u

k

� �
þ ln pWtrib

x sc
� �� �

;

ðB10aÞ

F04002 STOLAR ET AL.: PATTERNS OF TOPOGRAPHY AND EROSION RATE

15 of 17

F04002



and, for m 6¼ n, it is

rf ¼
n

n� m

� � u

k

� �1
n

W trib
x p

� ��m
n

Wy

2

� �1�m
n

 
� u

k

� �1
m

W trib
x p

� ��1
s
1�n

m
c

�
:

ðB10bÞ

The derivatives of ridge-valley relief with respect to rock
uplift rate and precipitation rate—after some algebra—can
be written as

@r

@u
¼ 1

n

1

u
rf ðB11Þ

and

@r

@p
¼ �m

n

1

p
rf : ðB12Þ

Substituting these into equation (B2) yields the net change
in ridge-valley relief:

Dr ¼ 1

n
rf

Du

u
� m

Dp

p

� �
: ðB13Þ

For an increase in precipitation rate within a tributary, the
constraints are 0 � Dq/q � Dp/p, and Dz = �Dr/2, and
equations (B8) and (B13) reduce to

m
Dq

q
� Du

u
� m

Dp

p
: ðB14Þ

For a decrease in precipitation rate (i.e., Dp/p � Dq/q � 0),
the inequality is

m
Dp

p
� Du

u
� m

Dq

q
: ðB15Þ

Notation

e erosion rate, m yr�1.
H thickness of incoming crust, m.
h distance exponent in Hack’s law.
k coefficient of fluvial erosion, m1�3m yr1�m.
ka coefficient in Hack’s law, m2�h.
m discharge exponent in stream power law.
n slope exponent in stream power law.
p precipitation rate, m yr�1.
q water discharge, m3 yr�1.
r ridge-valley relief, m.
rf fluvial relief, m.
rh hillslope relief, m.
s channel slope.
sc hillslope gradient.
u vertical rock velocity, m yr �1.
v horizontal rock velocity, m yr �1.
vc convergence velocity, m yr �1.
Wx across-strike width of trellis landscape, m.

Wx
trib across-strike width of a tributary, m.

Wx
trib* standard across-strike width of a tributary, m.
Wy along-strike width of trellis landscape, m.

x across-strike coordinate, m.
y along-strike coordinate, m.
yc location of tributary channel head, m.
z vertical coordinate and main channel elevation, m.
z mean elevation, m.
a mean slope of the wedge.
gr sensitivity factor for relief change, m.
gz sensitivity factor for main channel change, m.
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