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Abstract

In this work we present the results of a new analytical model that examines the coupling between glacial erosion and orogen
development. Surface processes are assumed to be glacially dominated, and tectonic activity is controlled by critical wedge
mechanics. In these circumstances, we find that orogen width is strongly dependent on both the rate of accretion and on the rate of
precipitation. The orogen size is linked to tectonic and climate changes via proportionality constants: the orogen width scales with
the rate of accretion to between the 2/3rd and 2nd powers, and with the rate of precipitation to the 1/3rd and 5/4th powers. The
value of the proportionality constants varies with the taper angle and the relative rates of ice deformation and sliding. In all cases,
the sensitivities are higher than those calculated for fluvially-eroding critical wedge orogens. Analytical solutions are supported by
the results of a numerical flow-line model. The flow-line model further predicts that uplift rates will be highest at, and just below,
the equilibrium line altitude. If glacial ablation is largely a calving process, rock uplift in the wedge will be strongly focused
towards the toe. The predicted response time of glaciated orogens to changes in climate and tectonic forcing is dependent upon the
constants of erosion, the rheology, and the rate of precipitation. These analyses predict that actual orogens have variable e-folding
response times, for example approximately 1.5 Myr for the Southern Alps of New Zealand and the Olympic Mountains of
Washington State, and approximately 5.5 Myr for the European Alps.
© 2007 Elsevier B.V. All rights reserved.

Keywords: glacial erosion; critical-taper mechanics; tectonics; climate; surface processes

1. Introduction

Climate plays a fundamental role in determining the
topographic evolution of actively uplifting mountain
ranges. The consequences of changing rates of precip-
itation on orogen evolution have been recently consid-
ered in models of wedge mechanics (Hilley and
Strecker, 2004; Whipple and Meade, 2004; Roe et al.,
2006). These models supply explanations of orogen
evolution and provide testable predictions for field

investigation. Erosion in previous analytical models is
restricted to the action of rivers, however, limiting their
application. In this study, we present a similar analytical
model that is focused on glacially-eroded landscapes.

The role of glaciation in orogen/climate coupling
needs to be considered for two reasons. Firstly, glaciers
are highly efficient erosive agents. Topography appears to
be controlled by glacial extent in a number of places,
including the Andes (Porter, 1981), and the Himalaya
(Brozovic et al., 1997). Furthermore, glaciated basins
produce more sediment per basin area than most fluvial
ones (Hallet et al., 1996), indicating that they are more
efficient at eroding landscapes. Results from conceptual
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(e.g. Whipple and Tucker, 1999) and numerical (e.g.,
Tomkin and Braun, 2002) models of alpine environments
suggest that relief is decreased as glacial coverage
increases.

Secondly, most active orogens have been heavily
glaciated during the Late Cenozoic (e.g., Denton and
Hughes, 1980), including the Himalayas, the Southern
Alps of New Zealand, the European Alps, the Andes, the
Alaskan Coastal Range, and the Olympic Mountains.
All of these ranges also host active glaciers and ice fields
today. Describing these systems with fluvial models
may therefore be inappropriate for both past and present
conditions.

In this study, we find that glacially-eroded, critical-
taper orogens (Dahlen, 1984; Dahlen and Barr, 1989;
Barr and Dahlen, 1989) behave differently than
fluvially-eroded equivalents (Hilley and Strecker,
2004; Whipple and Meade, 2004; Roe et al., 2006).
Firstly, the widths of glaciated orogens are predicted to
be more sensitive to changes in precipitation rate. For
shear-stress based fluvial incision, orogen width scales
as precipitation to the −1/4 power, while glacial orogen
width scales as precipitation to a power between −1/3
and −5/4. These glacial values are dependent on
whether the longitudinal profile of the glacier is more
sensitive to internal deformation or to basal sliding, and
on the average taper angle of the topography. Secondly,
glacial orogens are predicted to have different patterns
of erosion and uplift than fluvial orogens. Fluvial
erosion models require that rock uplift is fastest in the
core of the range (Stolar et al., 2006). In contrast, glacial
systems are predicted to have their highest rates of
erosion and rock uplift at and below the ablation zone,
which are at the edges of the range.

The analytical model is described below. We begin
with a simple one-dimensional model of an ice-cap
sliding on a flat base, and then examine the significance
of internal ice deformation, surface taper angles, and
differences in mass balance profiles. A flow-line model
is used to extend these results to cases requiring a
numerical solution. This numerical solution is also used
to predict the response of a few chosen orogens to non-
steady conditions. Although we avoid the complications
of mixed fluvial–glacial systems in this work, the results
presented point the way to a holistic model of climate/
orogen coupling that considers the role of temperature,
as well as that of precipitation.

2. Analytical model

We seek to determine the scaling relationship between
climate, accretionary flux, and orogen width for a

glaciated critical-taper wedge. The solution requires
modeling the ice profile so as to calculate the glacial
erosion yield. As in earlier fluvial studies (Hilley and
Strecker, 2004; Whipple and Meade, 2004; Roe et al.,
2006), we will examine the system in one dimension.
Fig. 1 presents the geometry of the one-sided orogen that
we consider initially. The case of a two-sided orogen is
examined in the discussion.

The size of the orogen is determined by the balance
of accretion and erosion. Wider orogens have larger
surface areas available for erosion, and so have higher
erosional yields. If accretion outstrips erosion, the
orogen will grow until the erosional yield (Y) matches
the accretionary flux (F ). Conversely, if the erosional
yield is larger than the accretionary flux, the orogen will
shrink. To compute the mass balance of an orogen we
therefore need to describe both the total erosional yield
and the accretionary flux.

The accretionary flux is the product of the thickness
and velocity of the accreting section. The erosional yield
of an orogen, a function of the climate, is not as simply
determined. We begin by deriving its value.

As the orogen is ice-covered, glacial erosion is the only
long-range erosion process in operation. The physical
action of ice on rock is the most important glacial erosion
process (as discussed in Hallet et al., 1996), and either
abrasion (Boulton, 1979; Hallet, 1979, 1981; Lliboutry,
1994) or quarrying (Hallet, 1996) dominates the glacial
erosion yield. Conveniently, both abrasive and quarrying
processes can be formulated such that the main control for
either mechanism is the ice velocity. In this study we
employ a simple, physically justified, erosion model in
which the rate of glacial erosion (ε)̇ is a function of the ice

Fig. 1. Schematic of an ice-covered orogen. The taper angle α is
controlled by wedge mechanics, while the distribution of ice, H(x),
is determined by the physical properties of ice, the pattern of
accumulation and ablation, and the width of the wedge, L. The width
of the wedge is determined by the balance of erosional and
accretionary yield.
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sliding velocity (Us) and is independent of entrained
debris:

de ¼ KgjUsjl: ð1Þ

where Kg and l are constants. This choice represents the
general form of the abrasion law proposed byHallet (1979)
and would apply to any erosion mechanism that scales
with basal velocity, including quarrying (Hallet, 1996),
and has been used in a number of studies (e.g. Oerlemans,
1984; Harbor et al., 1988; Braun et al., 1999). The
available field evidence (Humphrey and Raymond, 1994)
suggests that l=1 is valid over 3 to 4 orders of magnitude,
and we use that value of l here. Field studies suggest that
Kg=∼10−4 (Humphrey and Raymond, 1994).

The basal sliding velocity,Us, is described as a function
of the ice thickness and slope, as can the depth-integrated
deformation velocity (UPd). From Paterson (1994):

jUsj ¼ fsH
n�1j dðhþ HÞ

dx
jn ð2Þ

jPU dj ¼ fdH
nþ1j dðhþ HÞ

dx
jn ð3Þ

where h is the topographic height, H is the ice thickness,
n=3, fd is a constant, and fs is also a constant if an average
value is used for the sub-glacial water pressure (e.g.
Paterson, 1994; Knap et al., 1996).

The glacial erosion rate can therefore be calculated
with Eqs. (1) and (2) if the ice profile (Fig. 1) is known.
We use the conservation equation to derive the ice profile.
The ice thickness,H(x), is a function of distance from the
divide, and the total half-width of the orogen is L. H(x)
varies fromH0 at the divide to zero at the toe. The orogen
has a fixed taper angle, α. To begin with, we consider the
case in which precipitation (P) is a constant across the
orogen, and ablation is restricted to the toe. In these
conditions, we can set up the following conservation
equation to describe the ice flux across the orogen:

H jUs þ P
U dj

� � ¼ Px: ð4Þ
Note the ice thickness H and the sliding and

deformation velocities (Us and UPd) are functions of x.
The left-hand side of Eq. (4) can be rewritten as a
function of the ice profile by taking advantage of the
fixed topographic slope (Fig. 1), and substituting for the
velocities (Eqs. (2) and (3)):

H fdH þ fs
H

� �
Hnðj ddx ðH þ L tan að1� x

L ÞÞjÞn ¼ Px:

ð5Þ

Eq. (5) has a range of solutions for H(x) that depend
on the relative importance of deformation and sliding in
determining the ice profile (i.e. the size of fd H com-
pared to fs /H), and the basal slope (α).

Once the ice profile is found, then the sliding rate,
and thus the rate of glacial erosion, can be determined
across the orogen. Table 1 shows the proportionality
relationships between the tectonics (accretionary yield),
climate (precipitation rate) and the width of the orogen
for different topographic slope and ice flow conditions.

We present two examples that illustrate how the
results in Table 1 were derived. The other cases listed in
Table 1 are solved with analogous methods.

2.1. Example 1: lowangled topography, sliding-dominated
ice flow

We first present the solution for the limiting case in
which the bed has a very low slope (α≈0) and glacial
sliding is much more significant than ice deformation
(fd H« fs /H). In this case Eq. (5) can be simplified as

fsH
nðj dHdx jÞn ¼ Px: ð6Þ

Eq. (5) can be developed further by non-dimensio-
nalizing the heights and widths, by defining

H ¼ H0H V ð7Þ
and

x ¼ Lx V: ð8Þ

Table 1
Analytically-determined exponents (q and r) linking tectonics and
climate in steady-state critical orogens for different slope and ice flow
conditions

Topographic
slope

Dominant
ice flow

General
yield
relationship

Width/
climate
relationship

Width/
tectonics
relationship

Y~PqLr L~P
q
r L~F

1
r

Low Deformation Y~P
5
8L

1
2 L~P�5

4 L ∝ F2

Low Sliding Y~P
5
6L

4
3 L~P�5

8 L~F
3
4

Low Mixed Y~P
5
7L

6
7 L~P�5

6 L~F
7
6

High Deformation Y~P
2
5L

2
3 L~P�3

5 L~F
3
2

High Sliding Y~P
2
3L

5
3 L~P�2

5 L~F
3
5

High Mixed Y~P
1
2L

3
2 L~P�1

3 L~F
2
3

Y is the total erosional yield,P is the precipitation rate,L is thewidth of the
wedge, and F is the accretionary flux. The scale dependence of Yon P is
given by the value of q, and the scale dependence of Yon L is given by r.
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This gives dHdx ¼ H0
L
dH V
dx V, so Eq. (6) can be expressed as

fsH
n
0H VnðjH0

L
dH V
dx V jÞn ¼ PLx V ð9Þ

rearranging Eq. (9) to make the left-hand side of the
equation independent of fs H0, and L gives

H Vn

x V
dH V
dx V

� �n

¼ 1
fs

PLnþ1

H2n
0

: ð10Þ

The right-hand side of Eq. (10) is independent of x and
thus must be constant. Since fs is also constant, the
combination of H0, P and L on the right-hand side of Eq.
(10)must also be constant. Therefore it can be written that

H0~P
1
2nL

nþ1
2n : ð11Þ

Eq. (11) will be useful shortly.
The rate of erosion across the glacier can also be

expressed non-dimensionally. In this case, Eqs. (2), (7)
and (8) are substituted into Eq. (1) to give

de ¼ kg fsH
n�1
0 H Vn�1 H0

L
dH V
dx V

þ tan a

� �n

ð12Þ

and as we wish to find the total erosional yield we in-
tegrate over the domain:

Y ¼
Z L

0

dedx: ð13Þ

Remembering that in this case α≈0, substituting
Eq. (12) into Eq. (13), and removing the dimensional
parameters from the integrand produces

Y ¼ kg fsH
2n�1
0 L1�n

Z 1

0
H Vn�1 dH V

dx V

� �n

dx V: ð14Þ

The value of the integrand depends upon the boundary
conditions of the glacier, but, given those boundary
conditions, it is a dimensionless number. Therefore, after
subsuming the constants into a proportionality sign, the
yield can be expressed as a function of H0 and L.

Y~H2n�1
0 L1�n: ð15Þ

Finally, we can use Eq. (11) to replace H0 in Eq. (15):

Y~P
2n�1
2n L

3n�1
2n : ð16Þ

Eq. (16) links the yield with the precipitation rate
and the width of the orogen. In steady-state flux balance
the erosional yield must balance the accretionary flux
(i.e., Y=F). From Eq. (16):

L~F
2n

3n�1P
2n�1
3n�1: ð17Þ

As n=3, this suggests that the width of an orogen
varies with to the 3/4 power of the accretionary flux and
to the 5/8 power of the precipitation rate.

2.2. Example 2: high angle topography, mixed sliding
and deformation ice flow

Eq. (17) is the result for a sliding-dominated orogen
with a small topographic slope. We will now determine a
more complicated case, one in which the ice flows
occurs via a mixture of sliding and deformation, and the
topographic slope is large ( H0

L
dH V
dx V<< tan a). In this

case, Eq. (5) non-dimensionalizes to

Hnþ1
0 H Vnþ1 faH0H Vþ fs

H0H V

� �ðjH0

L
dH V
dx V jÞn ¼ Px;

ð18Þwhich rearranges to

1
x V
H Vnþ1 fdH0H Vþ fs

H0H V

� �
tanna ¼ PL

Hnþ1
0

: ð19Þ

The right-hand side of Eq. (19) still contains H0 and
so, in contrast to the case of pure sliding, it is not strictly
true that the right-hand side of Eq. (19) is constant as the
orogen varies. However the two terms within the paren-
theses on the left-hand side of Eq. (19) will to some
extent counteract each other as H0 varies. We make the
simplifying approximation the right-hand side is ap-
proximately constant. This assumption is shown to be
reasonable in the next section, in which the analytical
results are shown to predict the results of a full flow-line
calculation.

H0~P
1

nþ1L
1

nþ1: ð20Þ
As H0

L
dH V
dx V<< tan a, Eq. (13) becomes

Y ¼ kg fsH
n�1
0 L

Z 1

0
H Vn�1ðtanaÞndx V: ð21Þ

Again, the integral is a constant depending only on
model boundary conditions and not on the orogen width.
Therefore

Y~Hn�1
0 L1: ð22Þ

Substituting Eq. (20) into the integrated yield Eq. (22)
and setting Y=F gives

F~P
n�1
nþ1L

2n
nþ1: ð23Þ

Or, in other words:

L~F
nþ1
2n1P

n�1
2n : ð24Þ
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This method of analysis can be similarly extended to
the other four permutations of taper angles and
dominant ice flow regimes. Table 1 summarizes the
dependencies between erosional yield, orogen width,
tectonic activity, and the rate of precipitation for the
different end-member cases.

These analytical results prompt a number of observa-
tions concerning glacial erosion and wedge tectonics.
Firstly, there is a robust link between the rate of tectonic
activity , precipitation, and the width of the orogen: L
scales with F in a range of 2/3 to 2, with most
dependencies being near-linear or somewhat non-linear
(Table 1), and L scales with P in a range of 1/3 to 5/4.
Secondly, although orogenicwidth ismore sensitive to the
rate of accretion than the rate of precipitation, the values of
these scaling dependencies are significant for both. Even
the conditions that produce the least sensitive orogen
(high slope, mixed ice flow) suggests that width depends
on the precipitation rate to the 1/3 power and accretionary
flux to the 2/3 power, while more sensitive conditions
(such as low slopes and sliding-dominated flow regimes)
produce orogens with non-linear (with exponents of 5/4
for the precipitation rate, and 2 for accretionary flux)
dependencies betweenwidth, precipitation, and the rate of
accretion. Thirdly, the glaciated orogen is always more
responsive to changes in climate and tectonics than an
equivalent fluvially-eroded, orogen (Roe et al., 2006).

These analytical calculations do not predict spatial
patterns of erosion and rock uplift, do not specify what
angles describe high and low slopes, and do not indicate
when ice flow conditions are likely to be mixed or
dominated by the sliding or deforming end-members. In
the next section, we introduce a flow-line model that
explicitly addresses these issues.

3. Flow-line model

In this section, we present the results of a flow-line
model that verifies the results of the analytical model and
predicts the pattern of erosion across the orogen. In
addition, the flow-linemodel is used to test the significance
of glacial isostasy, spatially non-uniform precipitation, and
different patterns of ablation in the coupled system.

The flow-line model solves the conservation equa-
tion (Eq. (5)) numerically. Finding an ice mass balance
solution in this way is not new: an original discussion of
this method is presented in Nye (1959), and the
technique was first used to calculate erosion rates in
Oerlemans (1984). The model we use has been built
from textbook techniques (Hutter, 1983, Paterson,
1994). Our flow-line model solves the conservation
equation on a desktop computer, with MATLAB's built

in ODE solver (Shampine and Reichelt, 1997).
Correctly solving the case in which ablation is restricted
to the toe of the glacier requires the use of stretched
spatial co-ordinates (as in Roe and Brandon, 2007).

The numerical model is able to solve cases with
specific taper angles and spatially variable precipitation
and ablation rates. The numerical model is also explicit
about the differing contributions of sliding and internal
deformation in determining the ice profile, which
requires that the values of the velocity parameters fs
and fd be computed. From Paterson (1994):

fs ¼ 2AsðqgÞn
0:8

ð25Þ

fd ¼ 2Ad

nþ 2
ðqgÞn ð26Þ

where As is the sliding parameter (which we take to be
1.8×10−16 Pa−3 yr−1m−2), Ad the deformation param-
eter (which we take to be 2.5×10−16 Pa−3 yr−1), ρ is
the ice density (910 kg m−3), g is the acceleration due to
gravity, (9.81 m s−2), and the sub-glacial water pressure
is 80% of the ice overburden (following Knap et al.,
1996). The value of Ad is taken from a review of field
data and experimental results by Paterson (1994), and the
value of As empirically fits the recorded basal velocity of
glaciers (Bindschadler, 1983) and agrees with laboratory
tests (Budd et al., 1979).

We now present the results of the flow model. We
first show an agreement with the scaling ratios
determined in the previous section, and then show the
pattern of erosion that it predicts for glaciated orogens.

3.1. Verification of scaling relationships

The analytical results (Table 1) restrict the definition
of slope angles into two states (“high” and “low”) and
examine only three ice flow regimes, the two end
members (deformation dominated and sliding dominat-
ed) and an intermediate mixed case. For the deforma-
tion-dominated regime, we assume that the ice profile is
determined by the rate of deformation (so fs=0) but that
some sliding (and thus erosion) nevertheless occurs —
just not enough to change the shape of the ice profile.
The flow-line model is used to solve the conservation
Eq. (5) over a range of uniform precipitation rates for a
variety of topographic slopes. In this way, the scaling
predictions of the analytical model can be compared
against specific taper angles.

Fig. 2 shows the dependence of orogen width on
precipitation rate (q) and the accretionary flux (r), as
determined from the numerical model (grey shapes) and
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predicted by the analytical model (unshaded and black
shapes). The “low” slope results reproduce the flow-line
model solution when the topography is flat (α=0). A
critical-taper angle of 8° in the flow-line model closely
approximates the analytical model's prediction for
“high” taper angles. Taper angles between 0° and 8°
have scaling dependencies that are linear mixes of the
analytically determined “low” and “high” results. As the
angle increases from zero the dependencies become
increasingly weighted towards the “high” slope result.

Including the isostatic effect of the ice on the orogen in
the flow-line model lowers the surface topography
slightly, creating a non-uniform basal slope, but does
not significantly alter the scaling relationships shown in
Fig. 2.

3.2. Connection between erosion yield and slope

High taper angles increase the surface slope of the ice,
thus increasing the basal shear stress and the rate of
erosion. The erosional yield is therefore related to the taper
angle (Fig. 3). For taper angles near zero this relationship is
weak, as ice flow mechanics has the greatest influence on
the ice profile. At taper angles greater than about 4°,
however, the ice surface slope is largely determined by the
taper slope. At these higher taper angles the erosional yield
is a power function of the taper angle (Fig. 3).

For any given angle, sliding-dominated ice profiles
produce higher erosional yields than deformation-
dominated ice profiles (Fig. 3). Sliding-dominated ice
profiles are thicker than deformation-dominated pro-
files, as the latter is more efficient at transporting the ice
flux resulting from precipitation. As ice thickness
increases, so does the shear stress at the base, which
equates to higher rates of erosion. As the two flow
regimes are additive the mixed case has the thinnest ice
profile and the lowest erosional yield.

3.3. Pattern of erosion

The flow-line model predicts the spatial pattern of the
erosion rate. As the topography is in steady-state,
erosion rates are equivalent to rock uplift rates. The
distribution of rock uplift is sensitive to both the climate
and the slope of the wedge. For typical orogenic slopes,
erosion rates (and therefore rock uplift rates) are higher
towards the edge of the orogen. The gradient in erosion
rates is determined by the ablation pattern: it is most
pronounced if ablation is dominated by ice calving at the
glacial toe and less pronounced if ablation is controlled
by melting rates. In either case, erosion rates are highest
at and below the equilibrium line altitude.

Typical orogenic wedges have surface slopes of
between 2 (e.g. Barbados: Westbrook et al., 1988) and
6° (e.g. Taiwan/Olympics: Davis et al., 1983). Fig. 4
illustrates the influence of orogenic slope on the modeled
pattern of erosion. For Coulomb-plastic wedges, the slope
is controlled by the crust rheology, and is a constant
regardless of the size of the orogen. In this figure, the ice

Fig. 2. Analytically- and numerically-determined power dependencies
(q and r) of the orogen width on the rate of precipitation and the
accretionary yield. Ice profiles determined purely by deformation
(squares), purely by sliding (diamonds), and by a mixture of both
(circles) produce different solutions. Unshaded shapes indicate analytical
“low” slope values, black shapes indicate analytical “high” slope values
(from Table 1), and numerical values (from 0 to 8°, linked in order by the
dashed line) are shown in grey. Note that the analytical solutions provide
lower and upper bounds on the numerical results: increasing the finite
slope moves the solution from the “low” analytical result towards the
“high” analytic result. This relationship is most exact for the pure sliding
case. The small deviations from this trend for the deforming and mixed
cases are a consequence of the approximation made in Eq. (20).

Fig. 3. Log–log plot of erosional yield versus slope for ice profiles that are
the result of pure deformation (grey squares), pure sliding (diamonds), and
amixture of the two (grey circles), calculated from the numerical flow-line
model. Black lines indicate linear fits for high angled (above 4°) slopes.
The slopes of the linear fits are indicated for each of the three cases.
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profile is determined by the mixed case, with flow rates
determined by Eqs. (25) and (26). The accumulation zone
occurs over the upper two thirds of the orogen, balanced
by ablation over the lower third. Orogens with low slopes
(below 4°) have their highest erosion rates in the ablation
zone. Erosion rates in the ablation zone are roughly twice
as high as those in the accumulation zone. In orogens with
higher slopes (above 4°), the erosion yield increases, and
the erosion rate peaks at the equilibrium line altitude, in
line with previous expectations (Andrews, 1972; Hallet,
1979). The erosion rate is somewhat symmetrical around
the equilibrium line altitude for high-sloped orogens, but

as the ablation zone is shorter than the accumulation zone,
the lower part of the orogen experiences a higher average
ice flux and so erosion rates are still somewhat higher
towards the toe. The small, higher frequency variations in
the modeled erosion rate are the result of slight numerical
instabilities in the solution.

The pattern of erosion is strongly controlled by the
distribution of accumulation and ablation. This is de-
monstrated by changing the position of a step function
between accumulation and ablation. Four different
cases are shown in Fig. 5, in which the slope is held
constant at 5° while the ablation/accumulation pattern is

Fig. 4. Erosion rate patterns across the orogen for different taper angles. The ice profiles that produce these patterns are the result of mixed sliding and
deformation, with an accumulation zone that covers the upper 60% of the orogen (between 20 and 50 km), below which uniform ablation occurs such
that ice flux goes to zero at the glacial snout.

Fig. 5. Ice profile (A) and erosion rate (B) across the orogen for different accumulation/ablation ratios. The taper angle is fixed at 5°. In (A), the orogen itself
is indicated by the shaded grey region. The different ice profiles are indicated by the thin grey line (100% accumulation across the orogen), thick grey line
(90% accumulation), thin black line (80% accumulation), and thick black line (70% accumulation). The percentages indicate the size of the accumulation
zone as a proportion of the entire orogen. Note that all four accumulation functions produce similar ice profiles (upper figure) but dissimilar erosion patterns.
The highest rate of erosion occurs at the point of maximum flux (at which the ablation function replaces the accumulation function): the equilibrium line
altitude (ELA). Erosion rates remain relatively higher below the ELA than above it; most of the rock uplift in a steady-state wedge is near the toe.
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changed. In all cases, the accumulation zone is described
by a uniform 1 m/yr rate of (ice thickness equivalent)
precipitation. This accumulation zone begins at the divide
and continues for a proscribed distance downslope. Below
the accumulation zone there is a zone of uniform ablation,
the magnitude of which is chosen such that the sum of ice
ablated equals the sum of ice accumulated. Ablation rates
are thus faster for smaller ablation zones. In the case of
100% accumulation, ablation is infinite over an infinites-
imal distance at the toe; this is the end-member case in
which all ablation is the result of calving. The other end-
member occurs when the ablation/accumulation propor-
tion is 40/60, which is the maximum average size of the
accumulation area ratio observed in nature (Porter, 1979;
Meierding, 1982). Note also that the total accumulation,
and thus the ice flux, is larger when the equilibrium line
altitude is lower. As a consequence, the total erosional
yield is also larger when the equilibrium line altitude is
lower.

4. Discussion

4.1. Orogen uplift pattern comparison

The observed behavior of actual orogens provides
some support for the tectonic uplift dependence on
climate described here. Although currently available data
is open to different interpretations, it is hoped that this
work suggests a way of testing different hypothesis for the
evolution of specific orogens. We describe how the
predicted pattern of rock uplift is consistent with ob-
servations from the Southern Alps, the Chugach/St Elias
mountains of Alaska, and the Olympic Mountains of
Washington State.

The model predicts that rock uplift rates should be
linked to the distribution of precipitation, as observed in
the Southern Alps of New Zealand. The Southern Alps is
an active mountain range that was covered by an icecap at
the LGM (Denton andHughes, 1980). The rock uplift rate
and topographic maxima do not coincide; uplift rates are
highest on the western flank of the range (Kamp and
Tippett, 1993). Reconstructions of the glacial coverage at
the LGM (Soons, 1979) suggest that the strong preci-
pitation gradient across the range (Griffiths and McSave-
ney, 1983) depressed the ELA by several hundred meters
on the western side. This suggests increased glacial
erosion rates on the western flank relative to the center of
the range and the eastern flank. Both rock uplift rates and
precipitation rates are around five times higher on the
western flank, which is consistent with rock uplift rates
being approximately linearly related to the precipitation
rate (Table 1).

Modeled patterns of long-term rock uplift are dependent
on ice flux: high rock uplift rates are associated with high
rates of precipitation and restricted regions of ablation. This
is consistent with observations made in the Chugach/St.
Elias Range of southern Alaska, where long-term rock
uplift rates appear to be controlled by the rate of ice
accumulation (Meigs and Sauber, 2000). A combination of
increased coastal precipitation and a spatially-varying
lapse rate have strongly depressed the ELA on the western
side of the range relative to the eastern side (Pewe, 1975).
Calculated sediment flux (Hallet et al., 1996) and fission
track data (O'Sullivan et al., 1997) from the region support
the view that rock uplift rates are higher in the western and
central parts of the range than on the eastern side.

The model requires that rock uplift rates are highest in
the glaciated portion of mixed-process orogens. This is
observed in the Olympic Mountains ofWashington State,
where rock uplift rates are spatially non-uniform and
biased toward high elevations (Pazzaglia and Brandon,
2001). The Olympics represent the exposed crest of the
accretionary complex of the Juan de Fuca subduction
zone, and fission-track ages from zircons indicate that the
Olympics have been actively exhuming since at least
14 Ma (Brandon et al., 1998). These zircon fission track
ages, together with apatite fission track ages and apatite
He ages consistently show the highest rates of exhumation
(∼1 mm/yr) in the core of the range, with significantly
lower values (∼0.1 mm/yr) on the flanks. The range was
glaciated by a local ice sheet at the last glacial maxima that
was largely restricted to the center of the range (Heusser,
1974; Thackray, 2001): the regions of intensive glaciation
and high rock uplift rate substantially overlap. This
suggests the possibility that the pattern of rock uplift in the
range is glacially controlled. However, Stolar et al. (2006)
note that higher uplift rates in the core of the range might
also be expected for fluvially controlled systems. As the
Olympics is a mixed fluvial/glacial system, more detailed
modeling is required to resolve the relative importance of
the different surface processes.

4.2. Two-sided critical wedge

The analytical and numerical results presented above
describe the behavior of a one-sided critical wedge. A
single-sided critical wedge description is probably
reasonable for many glaciated orogens. The analytical
results (Table 1) indicate that erosional yields are
sensitive to the precipitation rate. Precipitation rates
are usually substantially higher on one side of an orogen
(e.g. Soons, 1979; Hulton et al., 1994; Thackray, 2001)
than the other. Erosional yields are therefore likely domi-
nated by the windward side of the range. Furthermore, as
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we show in this section, the dependencies of a one-sided
wedge bound any two-sided solution.

Two sided critical wedges are made up of a pro-side,
where material is accreted, and a retro-side (Willett et al.,
1993). Two-sided wedges are similar to one-sided
wedges, in that they grow self-similarly, but the slopes
of the two sides can differ with the retro-side being steeper
(Dahlen, 1984). If the slopes are different on either side of
the central divide, erosion rates, and thus uplift rates, can
also be different, leading to an uneven partitioning of rock
uplift rates across the two sides of the orogen. Previous
analytical models have examined this partitioning for a
two-sided orogen that is fluvially-eroded (Whipple and
Meade, 2004; Roe et al., 2006), finding that the steeper
sloped retro-side experiences higher rates of rock uplift
than the pro-side, regardless of the rates of precipitation or
tectonic accretion. The glacial case is more complicated,
as the taper angle partly determines how the erosional
yield varies with the rate of precipitation.

We begin by stating the general yield equation for
each side of the orogen. Generalizing Eq. (16), and
denoting subscripts of p for the pro-side and ψ for the
retro-side gives:

Yp ¼ kpP
qp
p Lrpp ð27aÞ

Yw ¼ kwP
qw
w Lrww ð27bÞ

where kp and kψ are constants. Total erosional yield Y is
a sum of the pro- and retro-side yields (Y=Yp+ Yψ).

If the two sides have the same slope, then the
equivalent constants and exponents (kp and kψ, qp and
qψ, rp and rψ) in Eqs. (27a) and (27b) will have
identical values. In this case, if precipitation is constant
across the range, erosional yield will be equally par-
titioned to the pro- and retro-sides. If the pro- and retro-
slopes are not equal, however, each side will have
different dependencies.

Consider the case in which a sliding-dominated
glacier covers a two sided wedge in which the pro-side
has a “low” slope and the retro-side a “high” one. Using
Table 1 and Eqs. (27a) and (27b), we find that

Yp ¼ kpP
5=6
p L4=3p ð28aÞ

Yw ¼ kwP
2=3
w L5=3w : ð28bÞ

Here, the pro-side yield is more sensitive than the
retro-side yield to changes in precipitation, but less
sensitive to changes in width. Table 1 reveals that this
trend is the same for all three types of ice flow.
Increasing a uniform precipitation rate (i.e., Pp=Pψ), for

example, increases the yield of the (low sloped) pro-side
relative to the (high sloped) retro-side. This indicates that
even though kpb kψ (note the positive relationship
between taper angle and erosional yield when all else is
held constant, Fig. 3), the side of the wedge that produces
the highest erosional yield depends on the climatic and
tectonic conditions.

Eqs. (28a) and (28b) indicate that different sides of
the wedge may have different climate and tectonic
dependencies. It follows that a two-sided wedge may not
have the same r and q exponents as a one sided wedge.
The dependency is bound by the one-sided solutions
however: in the sliding-dominated case the effective
value of q is between 2/3 and 5/6 (Eqs. (28a) and (28b)),
for example, regardless of the values of the constants
and exponents. If one side of the wedge is much more
erosive than the other the flux equation collapses to the
one-sided wedge case (where F=Yp or F=Yψ), as do
the climate and tectonic dependencies.

4.3. Temperature/tectonic coupling and the glacial
buzzsaw

We have examined the role of precipitation in orogen
control, but if glacial erosion is the dominant erosion
process, another climate parameter – temperature – is the
ultimate control. The empirical evidence (Porter, 1981;
Brozovic et al., 1997) for glacial erosion's significant
influence on surface evolution comes from the coincidence
between summit elevations and the glacial equilibrium line
altitude (ELA). This accord along many mountain ranges
implies that glaciers limit topography to a maximum
elevation near the ELA, the so-called “glacial buzzsaw
hypothesis”. The scaling relationships produced (Fig. 2)
by the sliding based erosion model suggests a physical
basis for this observation in critical-taper orogens.

The scaling relationships of Table 1 do not require that
the entire orogen be glaciated; only that glaciers are the
predominant agent of erosion. In the absence of other
significant erosion processes, the total rock uplift rate can
be balanced by a glacial erosion rate that is restricted to
higher alpine regions. The total erosional yield in this case
is roughly linearly proportional to the glacial extent
(exponent r, Table 1 and Fig. 2). Given a constant lapse
rate and precipitation rate, the ELA is controlled by the
mean sea-level temperature. If a cooling climate reduces
the sea-level temperature, the ELA drops, and the area of
glacial extent increases. Increasing the glacial extent
increases the erosional yield, so the orogen decreases in
size as erosion outpaces accretion. As the orogen shrinks,
the area of glacial coverage also decreases. Eventually, the
area of glacial coverage will return to its original, pre-
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climate change area. The erosion yield once againmatches
the accretionary yield, and a new steady-state orogen
width is reached. The topography is now lower, however,
and its maximum height was determined by the change in
sea-level temperature, as predicted by the glacial buzzsaw
hypothesis.

4.4. The response time of glaciated orogens to tectonic
or climate change

We have previously discussed how orogen width is
sensitive to the precipitation rate and accretionary flux
(Table 1). If there is a change in either tectonic or climate
regimes it is possible to predict the future steady-state
orogen width and rock uplift rate profile. The orogen
will evolve toward this new steady-state. We have not
yet determined the time needed for the orogen to reach
this new steady-state, however. In this section, we show
how the response time of an orogen to a step function in
tectonic or climate forcing is dependent on both the
properties of the wedge and on the precipitation rate.

If an initially steady-state orogen experiences a
change in either the precipitation rate or accretionary
flux, the width of the orogen will adjust until erosion
once again balances accretion. The area of the orogen A
changes with time if there is an imbalance between the
incoming tectonic flux F and the erosional yield Y.
Table 1 indicates that the erosion yield obeys the general
relationship Y=k1P

rLq. We can therefore state:

dA
dt

¼ F � k1P
rLq: ð29Þ

Note that the orogen area is a function of the orogen
width: A=DL / 2 where D is the total wedge thickness. If
the orogen is isostatically balanced, the total thickness is
a function of the height, H, and the crust,ρc, and mantle,
ρm, densities:D=H / (1−ρc /ρm). As the orogen height is
also a function of the length, we can rewrite Eq. (29) as

dA
dt

¼ F � k1k2P
rA

q
2 ð30Þ

where k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� qc=qmÞ=tana

p
. In general, Eq. (30)

does not have an analytical solution. However, 0bq /
2b1, (from Table 1) and thus it is possible to bound the
time response to be between the two end-members,
where λ=k1k2P

rand t is the time since the change in
system forcing:

AðtÞ ¼ Af þ ðF � kÞt for q=2Y0 ð31aÞ

AðtÞ ¼ Af þ ðAi � Af Þe�kt for q=2Y1: ð31bÞ

The solution to the time response is bound by these
two curves — Fig. 6's shaded region indicates the
possible change in area over time for an orogen that
grows from one steady-state area Ai to another, Af.

Note that in this case the e-folding response time is
dependent on the taper angle (λ∝α−1/2 for small angles)
and the precipitation rate (λ∝Pr).

4.5. Approximate response times for actual orogens

The previous analysis can be used to predict the
timeframe over which specific orogens react to tectonic
and climate change. We examine three different active
orogens that have all been substantially glaciated during
the Late Cenozoic, and all host active glaciers today: the
European Alps, the Southern Alps of New Zealand, and
the Olympic Mountains of Washington State. We
calculate the approximate response time of the orogens
numerically. The results should be treated somewhat
cautiously, however, as they rely on modern observa-
tions of tectonic fluxes and climate, and represent these
complex orogens as one-dimensional wedges that are
glacially dominated.

To calculate the mass balance for a particular orogen,
we need to determine both the accretionary flux and the
total erosional yield. The accretionary flux is the product
of the accreting thickness and the rate of accretion: it has
been estimated to be 75 m2/yr for the European Alps and
52 m2/yr for the Olympic Mountains (Brandon, 2004).
The Southern Alps is more complicated (as rates of
accretion vary across the orogen, and the thickness of
accretion is poorly constrained) but appears to be very
large, perhaps as much as 300 m2/yr (using values
described in Batt and Braun, 1999).

Fig. 6. Area versus time for a non-steady-state, glaciated, orogen. The
grey region marks the solution space for any evolution curve that
begins at (ti, Ai) and then asymptotes to the line Af. Regardless of the
system characteristics (such as taper angle, ice flow characteristics, or
precipitation rate) the curve is bound by the lines created by Eqs. (31a)
(q / 2=0) and (31b) (q / 2=1).
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The erosional yield is determined by substituting
Eq. (1) into Eq. (13), and requires estimates of the surface
taper angle and the rate of precipitation. We assume here
that all three orogens experience a mixed deformation/
sliding regime. The taper angle is smallest in the European
Alps (∼2°) and larger for the Olympics (∼4°) and
Southern Alps (∼6°) (Pfiffner et al., 1997; Willett, 1999).
Precipitation rate also varies greatly, from ∼1.5 m/yr in
the European Alps (Frie and Schar, 1998), to ∼3 m/yr in
theOlympics (Anders et al., in press), and∼10m/yr in the
Southern Alps (Griffiths and McSaveney, 1983).

Different steady-statewidths thatmatch erosional yield
with the accretionary flux are predicted for each range
considered as a single sided wedge. Encouragingly, this
simple model predicts reasonable steady-state widths of
glaciation (65 km for the European Alps, 49 km for the
Southern Alps, and 21 km for the OlympicMountains) for
the standard value of the glacial erosion constant
(Kg=10−4). In these examples, ice accumulation occurs
in the upper two thirds of the orogen while the lower third
ablates. The orogen width is sensitive to this accumula-
tion/ablation function: restricting ablation to the toe of the
glaciermore than doubles the erosional yield, for example.

By normalizing the length scale of the different
orogens, we can compare their time response. As an
example, we set the initial width of the orogen so that the
erosional yield is 75% of that required to balance the
incoming flux. The orogen therefore needs to increase in
width so that the erosion yield matches the accretionary
flux and steady-state is achieved. This change over time is
illustrated in Fig. 7. As can be seen, the SouthernAlps and
the Olympics require approximately the same amount of
time to approach a steady-state, while the European Alps

require substantially more time. The European Alps are
slower to respond because of the orogens' large volume.
The higher accretionary flux of the Southern Alps relative
to the Olympic Mountains compensates for the Southern
Alps larger volume, so the two orogens have coinciden-
tally similar response times.

These response times can be quantified. As these
curves are approximately exponential in form, we can use
the e-folding time to characterize the time response of
different orogens. The Olympics have an e-folding time
of ∼1.5 Myr, the Southern Alps of New Zealand also
have an e-folding time of ∼1.5 Myr, and the European
Alps have a longer e-folding time, of ∼5.5 Myr.

This e-folding time has consequences for orogen
evolution. Firstly, short term climate fluctuations, such as
Milankovitch cycles, will get averaged, and will not affect
orogen-scale dynamics. Although such glacial cycles can
influence the surface geomorphology, they do not persist
long enough to induce variations in the orogen size. The
longer-term cooling over the Late Cenozoic, which occurs
at the million year time scale, should induce changes in
orogen width and rock uplift rates, however.

Secondly, the e-folding times are significantly shorter
than the life of the orogens themselves: the Olympics are
about 15 Myr old (Brandon, 2004), the European Alps
∼50 Myr (Brandon, 2004), and the Southern Alps
∼5 Myr (Batt and Braun, 1999). This indicates that
climate change does have the capacity to influence the
evolution of orogens and that these changes may be
observed in rock uplift records at Myr timescales.

Finally, it is interesting to note that these estimates for
e-folding times are similar to an estimate for a fluvially-
dominated orogen. The Central Range of Taiwan (which
was largely unglaciated during the LGM) has been
modeled as a fluvially-controlled orogen by Whipple
and Meade (2006), and they predict that its e-folding time
is∼1.2 Myr. Glaciated orogen responses should be easier
to detect, however, as the size of the response to changes in
climate and tectonics is predicted to be significantly larger.

5. Conclusions

We have modeled an orogen in which glaciers are the
dominant erosive process and tectonic uplift is controlled
by critical-taper mechanics. There are some similarities
with the results of previous studies (Hilley and Strecker,
2004; Whipple and Meade, 2004; Roe et al., 2006) in
which fluvial erosion is the dominant erosive process.
The sensitivity of orogen width to precipitation rate for
both glacially and fluvially-eroding critical wedges
supports the idea of climate/tectonic coupling. In both
cases, the mean rate of rock uplift across the orogen is

Fig. 7. Dimensionless orogen width versus time for the European Alps,
the Olympic Mountains of Washington State, and the Southern Alps of
New Zealand. Lf is set to be the steady-state width for each of the
orogens, and Li=0.75×Lf.
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directly tied to the orogenic width, so changes in rock
uplift rates are linked with changes in climate.

Glacially-dominated orogen widths are predicted to
be more sensitive to both tectonic and climatic changes
than fluvially-dominated orogens. The smallest sensi-
tivity to precipitation (with an exponent of −1/3), and
the smallest sensitivity to accretionary flux (with an
exponent of 2/3) determined for the glacial orogen case
are larger than those predicted for the shear-stress fluvial
case (with equivalent exponents of −1/4 and 1/2,
respectively, e.g. Roe et al., 2006). In some circum-
stances, width scaling is super-linear for the glaciated
case: the largest precipitation rate sensitivity is −5/4,
and the largest accretionary rate sensitivity is 2.

Rock uplift rate in glacially-dominated wedges is
predicted to have a spatial pattern controlled by the cli-
mate. Rock uplift rates are predicted to be highest at, and
just below, the ELA, which is controlled by temperature,
precipitation, and the ablation mechanism. Lowering the
ELAby lowering themean annual temperature is predicted
to increase rock uplift rates at the toe of the orogen.

Initial estimates of the response times of glaciated
orogen are also presented in this work. Approximate
calculations indicate that glaciated orogens tectonically
respond to changes in climate forcing and accretionary
fluxes at million year time scales, with e-folding times
calculated for the Southern Alps of New Zealand and
the Olympic Mountains of Washington State to be
∼1.5 Myr, and the e-folding time of the European Alps
calculated to be ∼5.5 My. This response time is similar
in magnitude to changes in climate that have occurred
over the Late Cenozoic, and we predict that evidence of
climate/tectonic coupling can be found via thermochro-
nologic dating techniques.
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