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ABSTRACT

A central issue for understanding past climates involves the use of sparse time-integrated

data to recover the physical properties of the coupled climate system. We explore this issue

in a simple model of the midlatitude climate system that has attributes consistent with

the observed climate. A quasigeostrophic (QG) model thermally coupled to a slab ocean is

used to approximate midlatitude coupled variability, and a variant of the ensemble Kalman

filter is used to assimilate time-averaged observations. Dependence of reconstruction skill on

coupling and thermal inertia are explored. Results from this model are compared with those

for an even simpler two-variable linear stochastic model of midlatitude air–sea interaction,

for which the assimilation problem can be solved semi-analytically.

Results for the QG model show that skill decreases as averaging time increases in both

the atmosphere and ocean when normalized against the time-averaged climatogical variance.

Skill in the ocean increases with slab depth, as expected from thermal-inertia arguments,

but skill in the atmosphere decreases. An explanation of this counterintuitive result derives

from an analytical expression for the forecast error covariance in the two-variable stochastic

model, which shows that the relative fraction of noise to total error increases with slab-ocean

depth. Essentially, noise becomes trapped in the atmosphere by a thermally stiffer ocean,

which dominates the decrease in initial-condition error due to improved skill on the ocean.

Increasing coupling strength in the QG model yields higher skill in the atmosphere and

lower skill in the ocean, as the atmosphere accesses the longer ocean memory and the ocean

accesses more atmospheric high-frequency “noise.” The two-variable stochastic model fails

to cature this effect, showing decreasing skill in both the atmosphere and ocean for increased

coupling strength, due to an increase in the relative fraction of noise to the forecast error vari-
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ance. Implications for the potential for data assimilation to improve climate reconstructions

are discussed.

1. Introduction

Determining the state of the climate prior to the 20th century necessarily involves pa-

leoclimate proxy data. These data may be viewed as a relatively sparse network of noisy

observations that, in many cases, are indirect records of the climate mediated by biological

or chemical processes. As a result, reconstructions of past climates have relied on statistical

relationships between these proxies and large-scale patterns of atmospheric variability (e.g.,

Mann et al. 1999). One path to potentially improving upon these statistical reconstructions

involves the introduction of a dynamical model to provide independent estimates of the ob-

servations. This approach, which we refer to as dynamical climate reconstruction, links the

paleoclimate reconstruction problem to weather forecasting and modern reanalysis through

the theory of state estimation. Practical realizations of dynamical climate reconstruction

face numerous challenges, only one of which is taken up here. We address the problem of

estimating the state of coupled atmosphere-ocean climate models subject to observations

involving long averaging times typical of paleo-proxy data.

One key issue for dynamical climate reconstruction concerns the predictability time hori-

zon of the model; that is, the time for which initial-condition errors approach the clima-

tological distribution. When the (model) predicted observations are indistinguishable from

a random draw from the climatological distribution, the main value of using the model is

lost. The predictability timescale needed for reconstruction is set by the proxy data, which
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span a wide range of timescales. “High frequency” paleoclimate records provide information

with at best seasonal, but more typically annual, resolution (e.g., Jones et al. 2009). Since

atmospheric predictability is on the order of two weeks, predictability on the timescales of

these paleoclimate data require dynamics coupled to “slower” parts of the climate system.

For example, sea-surface temperatures have been shown to persist on interannual timescales

in observations (Frankignoul and Hasselmann 1977; Davis 1976, see Deser et al. 2003 for a

modern update) and models (Saravanan et al. 2000). Interest in this persistence has led to

research on variability and predictability in highly idealized models for air-sea interaction

(e.g., Barsugli and Battisti 1998; Saravanan and McWilliams 1998; Scott 2003). On longer

timescales, there is evidence that the overturning circulation in the deep ocean couples to the

atmosphere (e.g., Meehl et al. 2009), which appears responsible for predictable atmospheric

signals beyond the seasonal timescale (Latif 1998; Griffies and Bryan 1997; Grotzner et al.

1999; Boer 2000; Saravanan et al. 2000; Collins 2002; Pohlmann et al. 2004; Latif et al. 2006;

Boer and Lambert 2008; Koenigk and Mikolajewicz 2009).

Paleoclimate proxy data for air temperature and precipitation in midlatitudes represents

climate states integrated over all of the weather during the course of a season or annual cycle.

The characteristics of weather events, and the frequency with which they visit particular

locations, depends on larger-scale, slower varying properties of the atmosphere and ocean.

For example, extratropical cyclones organize in storm tracks, which in turn follow the location

of the jet stream. Thus the reconstruction problem is one where the details of individual

high-frequency features responsible for the proxy data are unknown, but the time average

of these features provides information on slower components of the system.

To address this problem, we use two idealized models of a thermally coupled midlatitude
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atmosphere and ocean mixed layer that represent both the relevant fast and slow dynamics.

The zero-dimensional energy balance model (referred to hereafter as the BB model) was

designed as an analog to the midlatitude atmosphere-ocean system by Barsugli and Battisti

(1998). The quasigeostrophic (QG) model, developed by Hakim (2000), explicitly calculates

the dominant atmospheric dynamics, and the slab ocean parameters were chosen to corre-

spond to those in the BB model. So, while the models are idealized, they capture important

mechanisms for paleo proxy data.

In order to exploit seasonal or longer predictive timescales and dynamically reconstruct

past climate states, an estimation method is needed to identify accurate initial conditions.

Here we will employ an ensemble Kalman filter (EnKF) technique applied to the above mod-

els of coupled atmosphere–ocean interaction to address two hypotheses: background climate

reconstruction errors become smaller when (1) the thermal heat capacity of the ocean in-

creases, and (2) the coupling between the ocean and atmosphere strengthens. The EnKF

is particularly attractive for addressing these hypotheses because it relaxes the assumption

of stationary statistics made in purely statistical reconstructions. Therefore, information

about the slow component of the system (the ocean) can affect the atmosphere through

both the forecast and the assimilation. Idealized models provide clean control of the pro-

cesses of interest, inexpensive repeatable solutions, and results that can be tested with more

complicated models.

The layout of the paper is as follows. Section 2 introduces the two models and the

assimilation systems built around them. The QG model is described in section 2a, and the

BB model is described in section 2b. Results are given in section 3, with those determined

numerically for the QG model in section 3a and those obtained semi-analytically for the
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energy-balance model in section 3b. Portions of the error for the energy balance model due

to the initial conditions and accumulation of noise are described in section 3c. Conclusions

are provided in section 4.

2. Method

a. Quasigeostrophic atmosphere model coupled to a slab ocean

To good approximation, the QG equations capture the dynamics of the midlatitude

storm tracks. Moreover, since potential vorticity (PV) is well mixed in the troposphere, the

dynamics may be further approximated by a uniform layer of PV bounded by rigid surfaces

representing the surface and tropopause; this reduces the calculation in three dimensions to

a two-dimensional boundary-value problem (Hakim 2000). This model, when coupled to a

slab ocean model, is referred to hereafter as the QG model.

The atmosphere component of the model is a two-surface dry QG model on an f -plane

that is thermally relaxed to a specified jet (Hoskins and West 1979) on a timescale of 8.6

days. The model is periodic is y and x (latitude and longitude), has an Ekman layer at the

bottom boundary, and solves exactly for the full three-dimensional fields of temperature and

wind given the surface potential temperature. The model was originally described in Hakim

(2000) who provides additional details on the solution methods. An uncoupled version of

the atmosphere model was used by Huntley and Hakim (2009) to explore the time-averaged

data assimilation algorithm for paleoclimate reconstruction proposed by Dirren and Hakim

(2005). Huntley and Hakim (2009) found a predictability horizon beyond which the model no
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longer provided information distinct from climatology (i.e., a fixed error covariance matrix).

However, this model lacked coupling to components of the climate system that have slower

timescales, which we address here by thermally coupling the QG atmosphere to a slab ocean.

The slab ocean does not move and only exchanges heat with the atmosphere. In order to

preserve the uniform-PV assumption of the atmosphere component of the QG model, heat

is exchanged uniformly at the surface and tropopause (i.e., through the entire depth of the

atmosphere), which is essentially an equivalent barotropic forcing of the atmosphere. The

heat flux is determined by the temperature anomaly difference between the atmosphere’s

surface and the slab ocean, modulated by a coupling constant. More realistic coupling coef-

ficients would also involve the wind speed magnitude or its square, but these were sacrificed

here for simplicity and to provide a link to the analytical model described below. Control

values for the constants in the model are listed in Table 1.

This simple model provides a framework for addressing the two hypotheses in terms of

two parameters: the coupling constant, and the depth of the slab ocean. While this coupled

model provides a testbed to study how the atmosphere, modulated by the slow thermal

inertia of a slab ocean, may be reconstructed on long time scales, it should be clear that this

model does not include nonlinear aspects of heat-flux exchange (e.g., due to wind speed),

ocean dynamics, changes in the mixed layer and its heat capacity, the seasonal cycle, or any

precipitation–evaporation-related processes. However, it does capture the dynamics of heat

exchange between a rapidly evolving atmosphere and a mixed layer with greater thermal

inertia, which is fundamental in midlatitudes. We proceed now to describe the assimilation

system used to reconstruct the model state from noisy observations of time-averages of the

atmosphere and ocean temperature.
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The EnKF data assimilation system for the QG model is implemented in the Jamaica re-

lease of the Data Assimilation Research Testbed (DART, Anderson et al. 2009), a community-

oriented ensemble data assimilation system. The Ensemble Adjustment Kalman Filter (An-

derson 2001) is used without covariance inflation and with covariance “localization” using

the Gaspari–Cohn function (Gaspari and Cohn 1999) with a half-width of half the domain

to deal with sampling error. Observations are placed at every other grid point, each with

an error of 1/10 of the domain-mean climatological variance for the averaging time of the

observations. Ensembles of 48 members are initialized with random draws of instantaneous

states from a 2500-day integration of the model. Each experiment consists of one ensemble

integration of 100 days without assimilation (the control case) and another integration with

assimilation.

In order to investigate the limit of utility of the reconstruction method, we examine the

background ensemble error variance, which is the error variance at the end of a forecast

cycle immediately before new observations are incorporated in the assimilation cycle. For

comparison, we use an ensemble integrated without assimilating any observations; so the

metric for skill is the error of the background ensemble normalized by the error of the

control ensemble. If this fraction is less than one, then useful information remains from the

previously assimilated observations at assimilation time.

b. Stochastic energy-balance model

A simpler zero-dimensional model of the atmosphere-ocean system provides insights into

the results of the more complex system described above. The model was first introduced by
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Barsugli and Battisti (1998), and will be referred to hereafter as the BB model. The model

utilizes the large timescale separation in the variance of the atmosphere and ocean to param-

eterize atmospheric nonlinearity as a stochastic process. Stochastic climate models such as

the BB model have a long history of providing a null hypothesis for problems in climate dy-

namics, dating from Hasselmann (1976), who used a stochastic climate model to explore how

persistent, large-scale sea-surface temperature anomalies could arise in midlatitude oceans.

The BB model has thermal exchange between an atmosphere and ocean, damping, and

random forcing applied to the atmosphere:

dTa

dt
= c(To − Ta) − τTa + (b − 1)To + N (1)

d
dTo

dt
= −c(To − Ta) − τTo, (2)

where Ta is the air temperature, To is the mixed layer temperature, d is the ratio of heat

capacities between the atmosphere and mixed layer, c is the coupling strength, τ is the

radiative damping timescale, b is a constant controlling the deterministic portion of the

atmospheric forcing, and N is the white-noise forcing. Equations (1) and (2) can be written

compactly as

d~T

dt̂
= A~T + N ~W, (3)

where

A =









−c − τ c + b − 1

c/d (−c − τ)/d









, N =









N 0

0 0









,

~T = [Ta To] is a vector of the temperatures, and ~W = [W 0] is a Gaussian white-noise

process. The constants b, c, d, τ , and N are chosen to be representative of climate-scale
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atmosphere-ocean interaction in the midlatitudes (see Table 1 and Barsugli and Battisti

1998).

In the absence of noise forcing, this system supports two normal-mode solutions that are

damped in time, which provide a convenient basis for understanding the system dynamics

with noise. The first mode damps quickly, with an e-folding timescale of 3 days for the

parameters in Table 1, and consists of a mainly atmospheric temperature anomaly with a

weaker ocean temperature anomaly of opposite sign, as noted by Schopf (1985) for a similar

deterministic model. The second mode has a an e-folding timescale of 89 days, and consists of

ocean and atmosphere temperature anomalies of the same sign, with larger magnitude in the

ocean by roughly a factor of two. This second mode contains the “memory” in the system,

which arises because the ocean anomaly is large and of the same sign as the atmosphere, so

that heat exchange is minimized between the two, resulting in a slow decay.

Because the BB model contains only two variables, the data assimilation reconstruction

problem can be solved semi-analytically. Since we are interested in errors, we need only solve

for the error covariance matrix. The expected error covariance over infinite experiments,

derived in the appendix, is:

〈

ε̄∗ε̄∗T
〉

=
1

L2

∫ L

0

eAtε∗(0)dt

(
∫ L

0

eAtε∗(0)dt

)T

+
1

L2

∫ L

0

(
∫ L

s

eA(t−s)
Ndt

) (
∫ L

s

eA(t−s)
Ndt

)T

ds, (4)

where ε∗ is the instantaneous error of an ensemble member, ε̄∗ is the time-averaged error

of an ensemble member, L is the averaging time, A is the matrix of model parameters, and

N is the matrix of noise forcing coefficients. The first term represents the evolution of the
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initial error covariance, which for this damped system leads to a decay of error covariance.

The second term involves an integral over the noise which gives exponential growth of error

covariance. We will refer to this second effect as the “accumulation” of noise.

3. Results

Before presenting results, we review the hypotheses outlined in section 1. The first is that

errors in climate reconstruction will be smaller when the thermal heat capacity of the ocean

is larger. The crux of this idea is that increasing the thermal heat capacity lengthens the

persistence timescale of anomalies in the ocean, as discussed in section 2b, which increases the

information carried forward by the model to the time of the analysis. The second hypothesis

is that stronger coupling between the atmosphere and ocean should also reduce errors in

climate reconstruction, especially for the atmosphere. Again, since the ocean is the source

of memory, stronger coupling should imprint that memory onto the atmosphere, enhancing

predictability. For the ocean, the role of coupling is less clear. Stronger coupling imparts

more high-frequency atmospheric “noise” into the ocean, reducing predictability, but some

of the ocean’s persistence is imparted to the atmosphere, which may mitigate this effect.

The data assimilation algorithm used here is designed for dealing with paleoclimate proxy

data, which averages or integrates the climate signal over a period of time. Because inter-

preting the effect of different averaging times is not as straightforward as instantaneous

observations, we consider first the role of averaging time on the error. For instantaneous

data assimilation, analysis errors should be inversely proportional to observation frequency,

since, all other things being equal, more frequent observations provide more information
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about the instantaneous state of the system if the model forecast is well within the pre-

dictability time horizon. For time-averaged data assimilation, the climatological variance

of the states also decreases with averaging time. Therefore, we scale the observation error

with climatological variance for the timescale of the observations to maintain constant error

relative to climatology. We expect that skill will decrease with averaging time.

a. Results for the coupled QG model

First we consider the dependence of background skill on slab-ocean depth and averaging

time, holding the coupling strength fixed at c = 0.25, shown in Fig. 1. Each pixel is the

skill of the background time-averaged state for a data assimilation experiment of length 100

assimilation cycles, area-averaged over the meridional center of the domain (the region of

basic state meridional temperature gradient). We show skill for the surface temperature

in the atmosphere; skill at the tropopause is nearly identical. The slab ocean depth d is

represented by the ratio of the slab ocean heat capacity to the atmospheric heat capacity.

Results show that for both the atmosphere and ocean, and for all depths of the slab ocean,

skill decreases as the averaging time increases, consistent with prior expectation. There is

a sharp drop of skill between 5 and 10 days, which we suspect corresponds to the model

damping timescale of 8.6 days.

As slab ocean depth increases, skill in the ocean increases, as expected. In contrast,

background skill for the atmosphere decreases with increasing slab-ocean depth, despite the

fact that ocean temperature reconstruction is more skillful. We will revisit these conflicting

results after reviewing those for the BB model.
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Figure 2 shows the analogous experiment for fixed slab ocean depth ratio at d = 4, and

varying the coupling parameter. For the atmosphere, skill increases slightly with increasing

coupling coefficient. Skill in the ocean decreases as the coupling coefficient gets bigger. These

results are consistent with expectations in the sense that the atmosphere is a source of noise

for the ocean and the ocean is a source of thermal memory for the atmosphere.

In both Figs. 1 and 2 there is a striking difference between skill in the ocean and

atmosphere. This is due to two factors. The first is simply the longer thermal inertia of

the ocean. The process timescales in the ocean are each a factor of d longer than in the

atmosphere, so persistence and predictability in the ocean should be longer. But even for

d=1, when the ocean and atmosphere have the same heat capacity (not shown), the ocean

has longer predictability than the atmosphere. One potential explanation is that since the

ocean has no advection, it integrates over the faster dynamics in the atmosphere, which are

dominated by advection, leading to higher skill at longer time averages.

b. Results for the stochastic energy-balance model

Before reporting the results from the BB model, we will compare its equilibrium statistical

properties with those of the QG model, which it is meant to approximate. Cospectral analysis

of the surface air and slab-ocean temperatures for the QG model are shown in Fig. 3, along

with analytical spectra from the BB model. For the QG model, histograms of analyses are

shown for each grid point in the center half of the domain in the y direction, where the

basic state temperature gradient is nonzero. Analyses apply to the last 8000 days of an 8500

day integration. Ten-day blocks of un-normalized timeseries are averaged together, and then
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cospectral analysis is carried out with a Hanning window of length 800 days using Matlab’s

spectrum function. Power spectra (Pa and Po), cospectra (Fao), and phase (φ) from the BB

model are calculated from Eqs. (14) and (15) in Barsugli and Battisti (1998),

Pa(σ) =
(d2σ2 + (c + τ)2)|N |2

((c + τ)2 − dσ2 − bc) + σ2(1 + d)2(c + τ)2
, (5)

Po(σ) =
c2|N |2

((c + τ)2 − dσ2 − bc) + σ2(1 + d)2(c + τ)2
, (6)

Fao(σ) = TaT
∗

o =
c|N |2(c + τ + idσ)

((c + τ)2 − dσ2 − bc) + σ2(1 + d)2(c + τ)2
, (7)

φ = tan−1 ImFao

ReFao

=
dσ

c + τ
, (8)

where σ is the frequency, (·)∗ indicates the complex conjugate, and α = bc. Just one line

is shown for the BB model, calculated with parameters b = 0.5 and N = 5, chosen by trial

and error to correspond well the QG model spectra; other parameters are the same as those

for the QG model.

As with the BB model, the spectra of the QG ocean and atmosphere increase toward lower

frequencies; power in the system cannot increase indefinitely because of the damping terms.

The cospectral power increases as frequency decreases in both the BB and QG models, and

there is a low-frequency peak in the quadrature spectrum of both models. The atmosphere

and ocean show high coherence at frequencies below 2π/100 days−1, which then degrades due

to nonlinear effects at high frequencies. The phase relationship of the QG model follows very

closely the BB phase at frequencies for which it is well defined. The close correspondence of

the spectral characteristics of the two models lends confidence that the BB model provides

a good approximation to the QG model for further analysis in a simpler framework.

The BB model data assimilation system discussed in section 2b provides the expected

error statistics over an infinite number of experiments and ensemble members. The numerical
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evaluation of Eq. (4), described more completely in the Appendix, begins with zero error and

cycles until equilibrium is reached. Observations of both the air and slab ocean temperatures

are assimilated with observational error taken to be 10% of the equilibrated error variance

in the absence of assimilation. The evolution of the solution to equilibrium is shown in Fig.

4.

Skill as a function of averaging time and slab-ocean depth for fixed coupling strength

is shown in Fig. 5 (compare to QG model results in Fig. 1). As in the QG experiments,

skill decreases with increasing averaging time in both the atmosphere and ocean. Skill in

the atmosphere decreases with increasing depth, and skill in the ocean increases with depth,

which is also consistent with results from the QG model. A notable difference between the

QG and BB model results is lower skill in the atmosphere of the BB model for all slab-ocean

depths and averaging times.

Skill as a function of averaging time and coupling strength, for fixed slab-ocean depth, is

shown in Fig. 6 (compare to QG model results in Fig. 2). Skill for air temperature decreases

as coupling increases, which is the opposite of that found in the QG experiments. Skill for

ocean temperature decreases as coupling increases, which is consistent with that found for

the QG model. In summary, compared to the QG results, the BB system shows a similar

response to varying slab-ocean depth, the same response to coupling for the ocean, but the

opposite response to coupling in the atmosphere.
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c. Decomposing error: accumulation of noise and initial condition

We can gain further understanding of the dependence of reconstruction skill on coupling

strength and slab ocean depth from the error evolution equation (4) for the BB system. As

discussed in section 2b, the error covariance evolution depends on two factors: the initial

error at the start of an assimilation cycle and the accumulation of stochastic noise. We

note that although the initial error depends on the noise error, observation error, and data

assimilation system, the decomposition discussed here provides a useful perspective on the

relative importance of initial error to accumulating noise in the forecast. Figure 7 shows the

total error broken into these two terms as a function of slab-ocean depth. Assimilation is

performed as for the previous assimilation experiments; the converged solution for the total

error and its two component parts are plotted separately for the atmosphere and ocean.

For the atmosphere, the fraction of the error variance attributable to initial error decreases

slightly with increasing depth, while the part proportional to noise accumulation increases.

The increase due to noise accumulation dominates, so that the total error increases with

depth. For the ocean, the fraction of error due to noise decreases strongly with increasing

slab-ocean depth, whereas the fraction due to initial error peaks at small depth and decreases

gradually with depth so that it dominates the total error for large depth.

Results for sensitivity to the coupling strength are shown in Fig. 8. For the atmosphere

noise error dominates over initial-condition error, as is the case for the depth experiments.

For the ocean, initial-condition error dominates, as for the depth experiments. For the ocean,

a notable difference from the depth experiments is that the noise error increases slowly with

coupling, whereas it decreases sharply with increasing depth. A physical interpretation of
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these sensitivity results is that deeper slab oceans are less sensitive to atmospheric noise

due to increased thermal inertia, whereas stronger coupling increases the amount of noise

introduced from the atmosphere, but this latter effect is weak compared to initial condition

error.

4. Conclusions

The problem of reconstructing past climates from time-average observations has been

explored within an idealized framework for midlatitude atmosphere-ocean interaction. A QG

model coupled to a slab ocean was used to explore the hypotheses that skill in reconstructions

will increase when (1) the depth of the slab ocean increases, and (2) the strength of the

coupling increases. Results show that for increasing slab-ocean depth ocean skill increases

as expected, but skill in the atmosphere does not. Skill increases slightly in the atmosphere

for stronger coupling, but it decreases in the ocean. For both atmosphere and ocean, skill

decreases with increasing observation averaging time.

The average freely-evolving behavior of the QG system was shown to correspond well

to that of a simple two-variable linear stochastic model for midlatitude air–sea interaction

(the BB system). Results for assimilation experiments for this system are similar to QG for

sensitivity to slab-ocean depth, but not for coupling. An analytical expression for the BB

error covariance forecast evolution helps explain these results. The atmosphere loses state-

dependent skill faster than the ocean because the stochastic component of error accumulates

more quickly than in the ocean. Moreover, the fraction of the total atmospheric forecast

error variance due to stochastic noise increases with both slab-ocean depth and coupling
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strength. That is, in the BB system, noise controls the solution more than initial-condition

error. A physical interpretation of these results is that the ocean becomes thermally stiffer for

increasing depth and coupling, so that noise “accumulates” in the atmosphere. For changes

in coupling, responses are not consistent between the models. We speculate that advection

of atmospheric anomalies combined with nonlinearities in the QG model cause this difference

in behavior.

What do these results imply for climate reconstructions from data assimilation? Recon-

structions from data assimilation are possible even when the “skill” of the forecast model

at assimilation time, which was explored here, is no better than climatology. In this case,

data assimilation can still be an improvement over statistical reconstruction, where climate

covariances are a strong function of mean state, for example. The simple mixed-layer models

considered here lack skill beyond a few months. Therefore, for the problem of paleoclimate

data assimilation, a prerequisite is to establish that there is skill on longer time scales. This

might happen with a model coupled to more slowly varying components such as the deep

ocean or ice sheets. However, two more criteria must also be met: 1) the component’s fidelity

to nature must be quantified, and 2) there should be a strong relationship between the slow

component and the observed proxy.
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APPENDIX

Development and evaluation of error covariance.

Here we develop analytic expressions for error covariance evolution in the BB model, for

both instantaneous, Ctotal, and time-averaged, Caverage, cases. Note that the adjustment to

the error covariance during the assimilation step does not require observation values, which

is a convenient property of the Kalman filter. The calculation relies on stochastic calculus,

an introduction to which is available in textbooks Øksendal (2003) and Gardiner (2004), as

well as an article directed towards atmospheric scientists by Penland (2003).

a. Instantaneous error covariance

Rearranging the system of equations in the typical style of stochastic calculus, (3) be-

comes

d~Tt = A~Tdt + NdBt. (A1)

Using the integrating factor e−At yields the solution

~T (t) = eAt ~T (0) + eAt

∫ t

0

e−As
NdBs. (A2)

We define the error of an ensemble member, or the ensemble mean, as the Euclidean

distance from the true state, ~TT (t): ~ε(t) = ~T (t) − ~TT (t). Defining the expectation over an
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infinite ensemble 〈·〉 (where ensemble members are denoted by the random variable Bs), the

ensemble error covariance is

Ctotal(t) =
〈

(~ε − 〈~ε〉) (~ε − 〈~ε〉)T
〉

=
〈

~ε∗~ε∗T
〉

. (A3)

Deviations from the ensemble mean are denoted by (·)∗, so ~ε∗ ≡ ~ε − 〈~ε〉 = ~T −
〈

~T
〉

.

Noting that the expectation over a random process vanishes
(〈

∫ t

0
dBs

〉

= 0
)

, the error

of an ensemble member at time t is

~ε∗(t) = eAt~ε∗(0) + eAt

∫ t

0

e−As
NdBs. (A4)

Applying the expectation operators over ensembles and experiments to the squared error

deviation ~ε∗~ε∗T , all cross terms with only one term integrated over dBs vanish. Noting that

〈

eAt
〉

= eAt, the error covariance is,

〈

~ε∗~ε∗T
〉

= eAt
〈

~ε∗(0)~ε∗(0)T
〉 (

eAt
)T

+

〈

(

eAt

∫ t

0

e−As
NdBs

) (

eAt

∫ t

0

e−As
NdBs

)T
〉

. (A5)

Distributing the last transpose, using Itô’s isometry, and rearranging, the expected error

covariance is,

〈

~ε∗~ε∗T
〉

= eAt
〈

~ε∗(0)~ε∗(0)T
〉 (

eAt
)T

+

∫ t

0

eA(t−s)
NN

T
(

eA(t−s)
)T

ds. (A6)

The two terms determine the error covariance evolution. The first is growth or decay

of the initial error covariance, depending on the eigenvalues of A. The second is the ac-

cumulation of noise, which increases the error covariance even when A has only negative

eigenvalues.
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b. Error covariance of time-averaged states

The error of the time-averaged state is equal to the time-averaged error. Therefore, the

error of a time-averaged state is given by

ε̄∗ =
1

L

∫ L

0

ε∗(t)dt =
1

L

∫ L

0

(

eAt~ε∗(0) + eAt

∫ t

0

e−As
NdBs

)

dt, (A7)

where ·̄ denotes a time average and vector symbols are omitted for clarity.

Squaring the quantity above and applying the expectation operator, the cross-terms

cancel as they did for the instantaneous error covariance, leaving

〈

ε̄∗ε̄∗T
〉

=
1

L2

∫ L

0

eAtε∗(0)dt

(
∫ L

0

eAtε∗(0)dt

)T

+
1

L2

(
∫ L

0

(
∫ t

0

eA(t−s)
NdBs

)

dt

)(
∫ L

0

(
∫ t

0

eA(t−s)
NdBs

)

dt

)T

. (A8)

Switching the order of integration and using Itô’s isometry again yields

〈

ε̄∗ε̄∗T
〉

=
1

L2

∫ L

0

eAtε∗(0)dt

(
∫ L

0

eAtε∗(0)dt

)T

+
1

L2

∫ L

0

(
∫ L

s

eA(t−s)
Ndt

) (
∫ L

s

eA(t−s)
Ndt

)T

ds. (A9)

The error covariance of time-averaged states evolves in an analogous fashion to the instan-

taneous states, depending on initial error and the accumulation of stochastic noise.

c. Evaluating the integrals

Since A is linear and constant for the BB model, the evaluation of the covariance integrals

is straightforward. The calculation will be shown only once, since all other terms can be

solved in a similar manner.
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The first term in the instantaneous error covariance equation (A6) can be evaluated

directly. For the second term, we define M(t, s) = eA(t−s), so that the second term can be

written as

∫ t

0

M(t, s)NN
T
M(t, s)T ds = N2









∫ t

0
m2

11ds
∫ t

0
m21m11ds

∫ t

0
m21m11ds

∫ t

0
m2

21ds









, (A10)

where the elements of M are mii and depend on t and s. We calculate the elements of M

by doing an eigenvalue decomposition of A, since if A = VDV−1 then eA(t−s) = VeD(t−s)V−1.

Then distributing and rearranging the elements of V and D yields

M(t, s) =
1

det(V)









v11v22e
d1(t−s) − v12v21e

d2(t−s) −v11v12e
d1(t−s) + v12v11e

d2(t−s)

v21v22e
d1t(t−s) − v21v22e

d2(t−s) −v12v21e
d1(t−s) + v22v11e

d2(t−s)









. (A11)

The integral of each element of (A11) has three exponential terms: e2d1(t−s), e(d1+d2)(t−s),

and e2d2(t−s), with all other quantities constant. This leaves the sum of many integrals of

the form
∫ t

0
ea(t−s)ds for a = 2d1, d1 + d2, and 2d2, which have solution

∫ t

0

ea(t−s)ds =
1

a

(

eat − 1
)

. (A12)

Evaluating the error covariance of time-averaged states is similar to evaluating the instan-

taneous error covariances. The first term of (A9) is rewritten by distributing transposes and

integrating (note that I is the identity matrix and (·)−T indicates an inverse and a transpose),

1

L2

∫ L

0

eAtε∗(0)dt

(
∫ L

0

eAtε(0)dt

)T

=
1

L2

(
∫ L

0

eAtdt

)

ε(0)ε∗(0)T

(
∫ L

0

(

eAt
)T

dt

)

(A13)

=
1

L2
A
−1

(

eAL − I
)

ε∗(0)ε∗(0)T
(

eAL − I
)T

A
−T . (A14)

22



For the second term, we return to M and its elements,

1

L2

∫ L

0

(
∫ L

s

M(t, s)Ndt

) (
∫ L

s

M(t, s)Ndt

)T

ds

=
N2

L2

∫ L

0









(

∫ L

s
m11(t, s)dt

)2
∫ L

s
m11(t, s)dt

∫ L

s
m21(t, s)dt

∫ L

s
m21(t, s)dt

∫ L

s
m11(t, s)dt

(

∫ L

s
m21(t, s)dt

)2









ds. (A15)

As in the instantaneous case, each of the elements of this matrix is the product of integrals

over exponential terms. Each of the exponential integral parts can be broken down into

∫ L

0

(
∫ L

s

ea(t−s)dt

∫ L

s

eb(t−s)dt

)

ds

=
1

ab

(

−
1

a + b

(

1 − e(a+b)L
)

+
1

a

(

1 − eaL
)

+
1

b

(

1 − ebL
)

+ L

)

. (A16)

Matlab implementation allows calculation of the error covariance of quantities averaged over

time L from an initial error covariance. An example integration of the system is shown in

Fig. 4.
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Table 1. Values of parameters used as baseline in the BB and QG models.

BB QG Description
d 20 20 Slab ocean heat capacity ratio (“depth”)
c 0.25 0.25 Coupling coefficient
τ 8.6 8.6 days Damping timescale
b 0.5 Deterministic SST forcing
N 5 Noise forcing amplitude
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Fig. 1. Skill for QG data assimilation system (ensemble error variance at assimilation time
normalized by control error variance) is shown, as a function of averaging time and slab
ocean depth. Panel a is the atmosphere and panel b is the ocean. Coupling coefficient is
c = 0.25.
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Fig. 2. As in figure 1, for varying coupling coefficient with slab ocean depth fixed at d=4.
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panels (b, d, and f). The top panels (a and b) show the “Spinup” phase, where error
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Fig. 5. Skill for the BB data assimilation system (error variance at assimilation time nor-
malized by control error variance) is shown, as a function of averaging time and slab ocean
depth, with the atmosphere in panel a and ocean in panel b. Coupling coefficient is fixed at
c = 0.25. Compare with figure 1.

36



Skill

0.2

0.4

0.6

0.8

1A
ve

ra
gi

ng
 ti

m
e 

(d
ay

s)

Air temperature

0.67

0.31

0.17

0.05

0.02

0.56

0.22

0.11

0.04

0.02

0.50

0.18

0.10

0.04

0.01

Coupling coefficient

 a

 0.1 0.25  0.4

 1

 5

10

25

50

A
ve

ra
gi

ng
 ti

m
e 

(d
ay

s)

Slab ocean temperature

0.98

0.83

0.67

0.40

0.20

0.96

0.73

0.54

0.27

0.11

0.94

0.65

0.46

0.20

0.07

Coupling coefficient

 b

 0.1 0.25  0.4

 1

 5

10

25

50

Fig. 6. As in figure 5, with varying coupling coefficient, and slab ocean depth fixed at d = 4.
Compare with figure 2.
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Fig. 7. BB forecast error variance as a function of slab ocean depth is shown, with the solid
line showing the total and the broken and dash-dot lines showing initial and noise components
of error. The atmosphere is shown in panel a and the ocean in panel b. Coupling coefficient
is fixed at c = 0.25 and averaging time of 10 days.
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Fig. 8. As in figure 7, but as a function of coupling coefficient, with slab ocean depth fixed
at d = 20.
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