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Physics is the set of rules by which we think the world works; mathematics is the 
language we use to compactly and precisely describe these rules and use the rules to 
make predictions. Our predictions may be of value themselves or be a test of whether our 
physics is correct.  This is an overview of tools used in this course. Most should be 
familiar from course pre-requisites.  Some are extensions of this assumed knowledge. 
 
 
1.1 Mathematical tools 
 
 
Numbers: real and imaginary 
 
Our most basic need is to describe how big something is. How long is it; how much does 
it weigh; how fast is it moving? This is what positive numbers are for. Positive numbers 
can be added or subtracted. Subtleties that are not very important to us is that some 
numbers are integers (whole numbers like 1, 13 or 65), others are rational (the ratio of 
two integers: 1.12 is the ratio of 112 and 100) and some are irrational (cannot be 
specified as the ratio of two integers, but may be the ratio of physical quantities described 
to infinite accuracy. Examples of irrational numbers are √2 or π (pi), the ratio of the 
circumference to the diameter of a circle. If a number requires an infinite number of 
places after the decimal point to express it completely, then it is irrational. 
 
Subtraction can also be thought of as the addition of a positive and a negative number. 
Negative numbers are useful in representing physical quantities like the charge of an 
electron. Negative numbers introduce an important complication because their square 
root is not a positive or negative number. The most fundamental square root of a negative 
number is the square root of  –1, which is commonly called “i” or (in engineering, “j”). 
Square roots of negative numbers are said to be “imaginary”, while ordinary numbers are 
said to be “real”.  We shall see that imaginary numbers have a very real meaning in the 
physical world.  
 
Quantities that are the sum of a real and an imaginary number are said to be “complex” 
numbers.  If complex numbers are equal, their real and imaginary parts are separately 
equal. Thus a+ib = c+id implies that a = c and b = d.  The notation Re{c} and Im{c} 
means the real and imaginary parts of a complex number c. For c = a+ib, Re{c} = a and 
Im{c} = b.  The “complex conjugate” of a complex number involves reversing the sign of 
its imaginary part. The complex conjugate of  a+ib is written (a+ib)* = a-ib. 
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Multiplication of real integers is first learned in grade school. It gets slightly more 
complicated when we consider the multiplication of rational, negative, imaginary and 
complex numbers, but the concepts are all straightforward generalizations. The following 
in which a, b, c and d are positive real numbers summarizes the various rules 
 

(a )(b) = (b)(a) = ab 
(a)(-b) = (-a)(b) = -ab 

(-a)(-b) = ab 
(a)(ib) = (ia)(b) = i(ab) 

(ia)(ib) = -ab 
(a+ib)(c+id) = (ac-bd) + i(ad+bd) 

 
For real or imaginary numbers, the order in a multiplication is unimportant. This is not 
true for complex numbers. This is easily seen by 
 

(a+ib)(c+id)* = (a+ib)(c-id) = (ac+bd) - i(ad-bc) 
= [(ac+bd) + i(ad-bc)]*  = [(c-id) (a+ib)]*  = [(c+id)* (a+ib)]* 

 

Thus reversing the order of multiplication of complex numbers results in the complex 
conjugate of the original result. 
 
A special case of complex multiplication that comes up very often is 
 

 (a+ib)(a+ib)* = (a+ib)(a-ib) = a2 + b2 = |(a+ib)|2 

 
where the |   | symbol means “magnitude (or size) of”. Thus a complex number times its 
conjugate is the square of its magnitude. 
 
 
Vectors 
 
A number is sufficient when only size is important, but numbers are cumbersome when 
used to describe things that have direction as well as magnitude. Vectors were invented to 
simplify the situation. A vector is an arrow with both length (magnitude) and direction. 
For instance, the velocity of an object is a vector that points in the direction that it is 
moving and has a length equal to its speed (the rate of change of distance with time). In 
this text, we will write vectors with bold face symbols. The symbols x or r will usually 
mean position and v or u will almost always mean velocity. In lecture, we will use 
symbols like v  or v because bold face is hard to write on a black or white board.  
 
A vector can be written in terms of its components along orthogonal “coordinate axes” 

zyxv ˆvˆvˆv zyx ++=  
 
In this case, x̂ , ŷ  and ẑ are “unit vectors” that point along the x, y and z axes of a 
rectangular coordinate system and have a length equal to 1 in whatever units the length or 
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magnitude of vector v is measured. The “components” vx, vy and vz are the projections of 
the vector on each of the three axes. Graphically, vx is related to v this way: 
 

                                            
The square of the length or magnitude of v in terms of its components is 
 

2
z

2
y

2
x

2 vvv|| ++=v  
 

Vectors can be added as shown in this illustration:  

Another way to get to the same result is to realize that the components of the sum vector 
are the sum of the components of the two vectors: 

zyxba ˆ)b(aˆ)b(aˆ)b(a zzyyxx +++++=+  
 The graphical way is more powerful because it does not rely on any imposed coordinate 
system. Often, there is no reason to impose a particular coordinate system on a physical 
situation. 
 
Vector subtraction is easily understood as the sum of a positive and a negative vector. 
The negative vector has the same magnitude as the positive vector, but points in the 
opposite direction. For the same vectors a and b used above, we have: 
 

a b 

c = a + b 

a 

- b 

c = a - b 
   = a + (- b) 

b 

y 

x 

v 

vx

! 

ˆ x  
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Dot product of vectors 
Vectors can also be multiplied. There are two ways to do this. One, called the “dot” or 
“scalar” product results in a number (sometimes called a “scalar” to distinguish it from a 
vector); the second called the “cross” or “vector” product results in a vector. 
 
If the angle between vectors a and b is θ, the dot product a·b involves projecting b onto 
the direction of a like this 

and then multiplying the length of this projected vector times the length of a. Thus 
 

θcos|b||a|ba =⋅  
 
The dot product is maximum when a and b are parallel and zero when they are 
perpendicular. Unit vectors of a rectangular coordinate system have 
 

1ˆˆˆˆˆˆ =⋅=⋅=⋅ zzyyxx  
0ˆˆˆˆˆˆ =⋅=⋅=⋅ zyzxyx  

 
These relations allow one to express the dot product in terms of vector components as 
 

zzyyxxzyxzyx bababa)ˆbˆbˆb()ˆaˆaˆa( ++=++⋅++=⋅ zyxzyxba  
 
It should be obvious that that the roles of a and b can be interchanged in computing the 
dot product. In fact, the dot product depends only on the angle between two vectors and 
not on their absolute directions. Note the dot product of a vector with itself is just the 
square of its magnitude. 
 
Cross product of vectors 
The geometry of the cross product bac ×= looks like this: 

a 
|b| cos θ  

b 

θ 

b 

a 

c 

θ 



 5 

Vector c is perpendicular to both a and b and θ is the angle between vectors a and b. By 
convention, the direction of c is given by the “right hand rule”: Hold your right hand with 
the thumb pointing up and your index finger in the direction of a. If you can rotate your 
index finger counter-clockwise less than half a turn to the direction of b, then your thumb 
points in the direction of c. If you have to rotate clockwise to get to b, then c is opposite 
to the direction of your thumb. This implies that the roles of a and b cannot be arbitrarily 
interchanged. In fact 

baab ×−=×  
 

The magnitude of a cross product is given by 
 

θsin|| |b||a|ba =×  
 
Thus the cross product is maximum when a and b are perpendicular to each other and 
zero when they are parallel.  
 
Expressing c in terms of the components of a and b is an algebraic mess and you need to 
be careful about the “handedness” of your coordinate system and whether it is 
“Cartesian” (standard orthogonal) or “curvilinear” (such as spherical or cylindrical). The 
convention we use in this course is that, unless specifically stated otherwise, coordinates 
are always right-handed and Cartesian. If the index finger of your right hand points along 
the x axis and your middle finger is bent at a right angle to point along the y axis, the z 
axis will be in the direction of your thumb. You can use the properties of the 33×  
determinant (if you are familiar with them) to write 
 

)bab(aˆ)bab(aˆ)bab(aˆ
bbb
aaa
ˆˆˆ

yzyxxzzxyzzy

zyx

zyx −+−−−==× zyx
zyx

ba  

 
This may seem un-necessarily complex, but the cross product turns out to be extremely 
useful in the context of the physics of planetary atmospheres and oceans because the 
subtle, but critically important effect of planetary rotation on winds and currents is easily 
expressed using the cross product in a way that is independent of coordinate system. The 
forces on a charged particle influenced by a magnetic field in Earth’s space environment 
are also much easier to work with using the cross product. 
 
Finally, complex numbers are usefully represented as two-dimensional vectors with the x 

imaginary axis 

real axis 
a 

b 
c = a + ib 



 6 

and y axes replaced by the real and imaginary axes. This is called the “complex plane”. 
 
Looking back at the definitions for the magnitude of a complex number and a vector, you 
see that they are identical when a is the real “component” and b is the imaginary 
“component”. This called the “rectangular” representation of a complex number. 
 
Functions and derivatives 
 
Physical properties, such as mass and charge can change with position and time. When 
this happens, we say that they are “functions” of space and time and we need tools for 
dealing with their rates of change.  Suppose that position x depends only on time t in such 
a way that there is only one possible value of x for each t.  x(t) is thus a single-valued 
function of its argument t.  

 
If we calculate x at t, at a later time t+Δt,  x will have changed to x(t+Δt) = x(t)+Δx. The 
average rate of change of x with respect to t (the speed) over the time interval Δt is 
 

Δt
Δx

Δt
x(t)Δxx(t)

tΔt)(t
x(t)Δt)x(t

=
−+

=
−+
−+  

 
which is the slope of a line through the points (x, t) and (x+Δx, t+Δt). Repeating this 
calculation for successfully smaller values of Δt, this slope approaches the slope of a line 
tangent to the x(t) curve at the point x(t). The quantity 
 

⎟
⎠

⎞
⎜
⎝

⎛
Δ
Δ

→=
t
xof0Δxaslimit

dt
dx  

 
is called the derivative of x with respect to t. The derivative of a curve is the slope of the 
tangent line. The tremendous breakthrough of the late 18th Century giants Newton and 
Descartes was to figure out how to calculate derivatives of functions without going 
through this limiting process. This allowed them to write down functional relations 
between, for instance, position and velocity and was essential to the development of 

x(t) 

t        t+Δt 

x+Δx 
 

x 

x 

t dt
dx  slope=  

t
x  slope
Δ
Δ

=  
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physics. Ironically, due the speed and large memory of modern computers, derivatives 
are now often routinely calculated with the old, discrete method. 
 
Higher degree derivatives are simply repeated application of the derivative. For instance 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛=
⎭
⎬
⎫

⎩
⎨
⎧

=⎟
⎠

⎞
⎜
⎝

⎛=
dx
df

dx
d

dx
d

dx
fd

dx
d

dx
fd

dx
df

dx
d

dx
fd

2

2

3

3

2

2

 

 
Enormous tomes exist describing the many mathematical functions useful in physics. 
However, most of the equations of physics have solutions that can be closely 
approximated by a very small number of functions that you really need to know about. 
 
The most important class of functions are exponentials et, where e is the irrational 
number 2.71828… If the argument t is positive, this function grows without bound; if it is 
negative, it decays to zero; if it is imaginary it oscillates. The exponential function has the 
remarkable property that its derivative is itself. Thus 
 

tt ee
dt
d

=  

 
The second class of functions are polynomials, which are sums of terms of the form tn, 
where n is a positive or negative integer. Rarely is |n| greater than 2. Polynomials include 
straight lines, parabolas, hyperbolas, ellipses, etc. The derivative of the nth term of a 
polynomial is 

1nn ntt
dt
d −=  

except for the case n = 0 for which 
 

0(constant)
dt
d(1)

dt
dt

dt
d 0 ===  

  
Since most functions consist of terms combined in various we ways, we need the 
following rules for calculating the derivatives of combinations: 

 

dx
dg

dx
dfg(x)][f(x)

dx
d

+=+  

 

dx
dfg

dx
dgf[f(x)g(x)]

dx
d

+=  

 

dx
dg

dg
dff(g(x))

dx
d

=  
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The first rule implies that the derivative of a polynomial with more than one term is the 
sum of the derivatives of its individual terms. The third “chain rule” is used very often. 
For instance if we let g = -αt we have 
 

αtggαt αe)(eαt)(
dt
de

dg
de

dt
d −− −=−=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= α  

 
 
 
Integrals 
 
Integration is the inverse of differentiation. Differentiation is computation of the slope of 
a curve; integration is the construction of a curve given its slope. The “indefinite” integral 
is defined by 
 

∫ = f(x)dx
dx
df(x) + a constant 

 
The indefinite integral is not unique because a constant has a derivative of 0 and so any 
size constant can be added to the right side of the above relation.  
 
We obviously have 
 

tt edte =∫ + a constant 
and one can easily show that 

tt e1dte αα

α
=∫ + a constant 

 
Except for the special case with n = –1, the indefinite integral of the nth term of a 
polynomial is 

1n
xdxx

1n
n

+
=

+

∫  + a constant 

 
as you can easily see by noting that the derivative of the right hand side is xn.  
 
The special case with n = –1 is 

ln(x)
x
dx

=∫  + a constant 

 
where the “natural logarithm” ln(x) (sometimes called the “naperian logarithm” after its 
discoverer Napier; also sometimes called the base e logarithm) is defined by 
 

ln(x)ex =  
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The natural logarithm is the third type of function you need to know about. Its derivative 
from the next-to-last equation above is obviously 
 

1x
x
1ln(x)

dx
d −==  

 
You may be more familiar with the base 10 logarithm defined by 
 

(x)log1001x =  
 
In order to avoid confusion between these two types of logarithms, we always write ln(x) 
for the natural logarithm although computer languages such as Matlab, C and Fortran 
write log(x). Base 10 logarithms will always be written log10(x) while computer 
languages commonly use log10(x).  A useful property of all logarithms easily proved 
from their definitions is 
 

)log()log()log( yxxy +=  
 
where we have not specified the base because this holds for all bases. Only 35 years ago, 
base 10 logarithms were extremely important in courses like this because hand-held 
calculators cost as much as high-end laptop PCs today. Scientists routinely did accurate 
multiplication using slide rules that mechanically added base 10 logarithms. High school 
students were taught to do the same thing using base 10 logarithm tables. 
 
You were probably first introduced to integrals as the “area under a curve”.  We can 
approximate f(x) in the figure below with three straight lines. 
 

 
 
The area between the function curve and the portion of the x axis between x0 and x3 can 
then be approximated by summing the area of the trapezoids of width Δx. The result is 

 

Δx 

f(x) 

x0    x1       x2    x3 

f 

x Δx Δx 
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Δx
2
)f(x)f(x)f(x

2
)f(xArea 3

21
0 ⎟

⎠

⎞
⎜
⎝

⎛ +++=  

 
If we repeat this process with a smaller Δx and more trapezoids, the area will be a better 
approximation to the area under the curve. The limit as Δx becomes very small and the 
number of trapezoids becomes very large is the true area under the curve and is called the 
“definite” integral of f(x): 
 

)f(x)f(xdx
dx
df(x)

minmax

x

x

max

min

−=∫  

 
 
Solution of a simple Ordinary Differential Equation (ODE) 
 
From our point-of-view, the most important use of integration is for the solution of 
differential equations. An ODE is an equation with at least one term that is a derivative 
with respect to one variable. A simple, but very important example is 
 

H
ρ

dz
dρ

−=  

 
where ρ is a function only of z and H is a constant. ODE’s of this form come up over and 
over again. This ODE involves only a first derivative and is said to be of “1st degree”. Its 
solution is actually obvious, because the equation states that the derivative of the function 
ρ is equal to itself (scaled by the constant H). We have already noted that the function 
whose derivative is equal to itself is the exponential. So the solution must be an 
exponential. However, it is instructive to solve this equation this time in a more formal 
way using integration. 
 
Remembering that the derivative is really the ratio of a small change in ρ due to a small 
change in z, we can multiply the above equation by dz and divide it by ρ to obtain 
 

dz
H
1

ρ
dρ

−=  

 
The indefinite integral of this equation is 
 

( )
H
zdz

H
1ρln

ρ
dρ

−=−== ∫∫ + a constant 

 
Determining the constant requires further information. This is most commonly in the 
form of a “boundary condition”. For instance if ρ = ρ0 when z = 0, the constant must 
obviously be ln(ρ0). We then have 
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( ) ( )0ρlnH
zρln +−=  

Which can be re-arranged to give 

( ) ( )
H
z

ρ
ρlnρlnρln
0

0 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−  

The defining relation for the natural log then implies that 
 

H
z

0

e
ρ
ρ −
=  

or 
H
z

0 eρρ
−

=  
 
We will see that this equation gives the exponential decay of the density (mass per unit 
volume) of a planet’s atmosphere as a function of altitude. The constant H is called the 
“scale height” and is the distance (about 10 km for Earth) over which the density 
decreases by a factor of e-1  = 0.37. The relationship of H to the physical properties of the 
atmosphere and the planet’s gravity will be described later. 
 
Exponentials with real arguments 
 
Here are two plots of the decaying exponential function N0

t/τe− : 
 

 
 
If t is time, then τ is called the “time constant” or “decay time”. It is the time for the 
function to decay to e-1 = 37% of its original value. In two time constants, the function 
has decayed to 13.5%; in three time constants it has decayed to 5% and in 5 time 
constants it is less than 1%. Discrete points are plotted on each curve at time intervals of 
τ/2. The plot on the left shows the function in its full “dimensional” form in which the 
actual value of the function is plotted versus time. N0 is the starting value of the function. 
It might, for instance, be the initial number of radioactive Carbon 14 atoms in a sample. 
The curves on the right are normalized by N0. The three curves on the left then coalesce 
into the single curve for τ = 5,000 years on the right. The shape of this curve does not 
depend on the initial value. The two other curves on the right are for other values of τ. An 
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even more useful way to plot the same data is its completely “non-dimensional” form in 
which the time axis is normalized by the decay time. Then the three curves on the right 
above coalesce to the single curve plotted in this figure: 
  

 
Because exponentials become small so rapidly, it is difficult to see what is happening in 
the above plot after several time constants. In particular, deviations from exponential 
behavior would be hard to detect. “Logarithmic” plots are a useful alternative.  If we take 
the natural logarithm of e-t/τ we obtain: 
 

( ) t/τeln t/τ −=−  
 

This next plot of this relation gives a straight line with a slope of –1:  
 

 
The left-hand scale uses the natural log values. We rarely actually plot the natural log, 
however. Instead, we usually take the base 10 logarithm giving 
 

( ) ( ) ( )t/τ0.4343elogt/τelog 10
t/τ

10 −=−=−  
 

A plot of the base 10 log of an exponential is still a straight line, but the log10 scale shown 
in the middle has been “stretched” and thus the slope is -.4343 instead of  –1. Finally, 
instead of using the log10 values as tick mark labels on the vertical axis, it is common to 
use the values of the function itself. Thus –2 is labeled 10-2 etc. This “logarithmic scale” 
is shown to the right. This type of graph is called “semi-logarithmic” or simply semi-log 
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because only one of the axes is logarithmic. These plots can be automatically generated 
by most graphing software or can be plotted by hand on semi-log graph paper. 
 
A semi-log plot is equally useful when the behavior is a growing exponential: 
 

 
The radioactive decay of Carbon isotope 14 has a time constant of 5730 years. This decay 
time is determined by counting the number of energetic particles ejected in a given time 
by the break-up of C14. Carbon isotope 12, on the other hand, is stable and does not 
decay. The ratio of the number of atoms of C14 to C12 in the atmosphere is kept nearly 
constant by the influx of cosmic rays. Living organisms are constantly exchanging carbon 
with the atmosphere and thus have a C14 to C12 ratio equal to the atmosphere. When the 
organism dies, however, it stops exchanging carbon with the atmosphere and the ratio 
decays with a time constant equal to the decay of C14. By measuring the C14 to C12 ratio 
in dead trees killed when their roots were inundated by salt water during subsidence at 
the time of a large, pre-historic earthquake, one can determine when an earthquake 
occurred.  This is how we know that the last great earthquake along the Pacific Northwest 
coast was about 300 years ago. 
 
However, measurements without error are not possible. The next plot below on the left is 
the standard decay curve with “absolute” error bars of  ± 0.05 added to “data” at time 
intervals of 0.5 τ. The semi-log equivalent is shown on the right. First note that we would 
not be able to distinguish the value of the function from 0 for t/τ ≥ 3. Thus, if this was the 
level of error for Carbon 14 dating, we could only date material with an age of less than 3 
time constants or about 17,000 years. Decreasing the measurement error helps, but not 
much. Reducing absolute error a factor of 10 to ± 0.005 extends the maximum age that 
can be determined to only about 5 time constants; another factor of 100 reduction to ± 
0.00005 gets you to about 10 time constants. Modern instrumentation can achieve very 
small error levels, but Carbon 14 dating is unlikely to ever exceed 100,000 years. 
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Note that, while the error bars have equal length on the plot of the decaying exponential 
to the left, the same error bars are not of equal length on the semi-log plot to the right.  
 
In the two plots below, the error bars for all have the same “relative” or “percentage” 
errors. They have been scaled so that the bars have at t=τ are the same length as the 
absolute errors above.  in the “absolute” error plots above have the same length a. 
Because the relative error is a fixed percentage of the value of the function (13.5%), the 
lengths of the bars decrease as the function decreases and the error bars on the semi-log 
plot are all equal. 
 

 
It is important to understand the difference in behavior of  “absolute” and “relative” error 
bars. In particular, if you encounter error bars that are all the same size on a semi-log 
plot, it should awaken a healthy skepticism. They imply that measurements are more 
accurate when the “signal” is smaller. This is a highly unlikely state of affairs. 
 
Exponentials with imaginary arguments. 
 
The exponential function eiθ  is  complex.  Its  magnitude  squared  is  
  

( ) 1eeeeee|| 0iθiθiθiθ*iθiθ2 ===== −−θie   
  
Plotted on the complex plane it is a vector of unit length pointing away from the origin 
and making an angle θ with respect to the real axis. The projection of this vector on the 
real axis is cos θ and its projection on the imaginary axis is sin θ. 
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Thus the imaginary exponential can be written in its complex form as: 
 

θsiniθcoseiθ +=  
and  

! 

e-i" = cos" # i sin "  
 

From these two equations, the following expressions are easily derived: 
 

! 

cos" =
ei" + e#i"

2

sin" =
ei" # e#i"

2i

 

 
The imaginary part of the argument iθ (i.e. θ) is called the “phase”. Commonly the phase 
is replaced by kx for oscillations in space or ωt for oscillations in time. The 
“wavenumber”  k has units of radians per meter. It is related to the “wavelength” λ of a 
complete oscillation of either the real (cosine) or imaginary (sine) part of the oscillation 
by 

λ
2πk =  

The “angular frequency” ω is related to the frequency for a complete oscillation by 
 

cos θ 

sin θ 
e i θ 

θ 

imaginary axis 

real axis + 1 – 1 

+ i 

– i 
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f2πω =  
 

and to the period T of a complete oscillation by 
 

T
2πω =  

 
Here is a plot of two complete oscillations of the real (cosine) and imaginary (sine) parts 
as a function of kx. 

Note that the sine function is identical to the cosine function except for being shifted to 
the right by π/2 radians (90 degrees).  
 
Differentiation of a sinusoidal oscillation does not change its shape. Instead, it shifts its 
phase to the left by π/2. This is most easily seen for the sine. The derivative of eiθ is 
 

cosθiθsin)sinθiθcos(iiee
dθ
d iθiθ +−=+==  

 
As noted earlier, when complex quantities are equal, their real parts and their imaginary 
parts must be separately equal. Thus 
 

θcos}e
dθ
dIm{θsin

dθ
d iθ ==  

 
So the derivative of the dashed curve above is the solid curve. Likewise 

λ = 2π/k 
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θsin}e
dθ
dRe{θcos

dθ
d iθ −==  

 
which is also simply a cosine with a π/2 negative phase shift as you can see by mentally 
flipping the dashed curve above upside down 
 
Exponentials and complex numbers 
 
It should be obvious from the definition of the complex plane and the discussion of an 
exponential with an imaginary argument, that a general complex number in its 
rectangular form can also be written in its “polar” form 
 

iθreiba =+  
 

where 
22 ba|iba|r +=+=  

 
is the distance from the origin to the point representing the complex number on the 
complex plane and 
 

⎟
⎠

⎞
⎜
⎝

⎛= −

a
btanθ 1  

 
is the phase of the complex number. When making this transformation, you need to be 
careful that the phase is in the correct quadrant of the complex plane. 
 
Traveling sinusoidal waves 
 
We have considered only functions of a single variable. Waves in nature, however, 
depend on both distance and time. We shall show later that the height of a cosine 
disturbance on the surface of an ocean (or your bathtub) can be written 

ωt)(kxcosAt)h(x, −=  
 
where A is the deviation of the crest of the wave from the wave’s average height. At a 
fixed time (such as t = 0), this function is the solid curve plotted above. What you see is a 
surface that undulates spatially with a wavelength λ = 2π/k.  If, however, you concentrate 
on a fixed point in space (such as x = 0), what you see is a surface that oscillates up and 
down with a period τ = 2π/ω. Now suppose you want to always be at a crest of the wave, 
you would need the phase of the cosine in the last expression above to be 0, 2π, 4π, etc. 
So you would need 
 

…21,0,n2nπωtkx ==−  
 
which can be rearranged as 



 18 

k
2nπt

k
ωx +⎟
⎠

⎞
⎜
⎝

⎛=  

 
Taking the derivative of this with respect to t gives 
 

pck
ω

dt
dx

==  

 
This is the velocity at which you need to move to stay on the crest. This velocity is called 
the “phase velocity” and it will always be denoted cp. You can easily repeat this argument 
using the trough of the wave or, for that matter, any wave phase. Note also that the wave 
above has a positive phase velocity (moves in the direction of positive x). The wave 
 

ωt)(kxcosAt)h(x, +=  
 

moves in the negative x direction. 
 
Solving another simple ODE and finding the extreme value of a function 
 
If velocity v is the rate of change of distance x with time t and acceleration a is the rate of 
change of velocity with time, we can write mathematically 
 

dt
dxv =  

 

2

2

dt
xd

dt
dx

dt
d

dt
dva =⎟

⎠

⎞
⎜
⎝

⎛==  

 
Suppose we want to understand the dynamics of water that is erupted from a geyser such 
as “Old Faithful” in Yellowstone National Park. Once the water is squirted out of the 
“throat” of the geyser, it is acted on only by Earth’s gravity. Thus each “particle” of water 
feels the “acceleration of gravity”. We express this mathematically as 
 

g
dt
zd
2

2

−=  

 
This is also very simple ODE of “2nd degree” that comes up over and over again. The 
minus sign on the right is because we have defined vertical position z to be positive 
upwards and the acceleration of gravity is downwards. We will let the ground surface 
(i.e. the exit of the throat) be z = 0 and measure time from the instant that the water 
leaves the throat. The indefinite integral of this equation is 
 

Agt
dt
dz

+−=  
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where A is the integration constant. A useful boundary condition to constrain A is the 
velocity v0 of the water at the instant it leaves the geyser throat. Thus at t = 0 
 

0vA
dt
dz

==  

 
and therefore the water velocity at times greater than 0 is 

 

0vgt
dt
dzv(t) +−==  

 
However, measuring v0 is not an easy task and so this result in not very useful. We can, 
however, solve for v0 in terms of a quantity much easier to observe:  the maximum height 
of the eruption H.  This last equation above is an ODE of 1st degree and its indefinite 
integral is 

Ctvgt
2
1z 0

2 ++−=  

 
where C is another integration constant.  Since z = 0 at t=0, we must have C = 0 and so 
 

tvgt
2
1z(t) 0

2 +−=  

 
At this point, we could find v0 by brute force: We could guess its value and compute z(t) 
for many values of t to find the z(t) that is maximum. If this is not equal to H, we could 
keep altering our guess for v0 until we do get H.  Calculus gives us a more elegant and 
much easier way: Our expression for v(t) states that the water velocity decreases with 
time as the water rises. This continues until the velocity drops to 0 after which the water 
starts to descend. Thus the top of the eruptive water column (the maximum value of z) 
occurs when 

0v
dt
dz

==  

 
The derivative of our expression for z(t) (which is our expression for v(t)) implies that at 
the maximum water altitude 

0vgt0 +−=  
which can be solved to give 

g
v

t 0=  

Substituting this into z(t) we get 

2g
v

g
v

v
g
v

2
gH

2
00

0

2
0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  
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Which can be re-arranged to give 
2gHv0 =  

 
Thus if H = 50 m and g = 10 m/s2, v0 = 32 m/s = 110 km/h. We have learned something 
useful by finding the extreme value of a function.  
 
In general, the maximum or minimum of a function f(x) occurs for the x at which 
 

0
dx
df

=  

 
This equation may have more than one value of x at which it is true and so there may be 
more than one “extreme point”.  If you are looking for the global (i.e. biggest) maximum 
(or smallest minimum) you will have to examine all of the extreme points. 
 
You can determine whether you have found a maximum or minimum by looking at the 
2nd derivative. All three curves in the next figure have a point at which the slope is 0. 
 
 
 
 
 
 
 
 
 
The curve that is concave upward has a minimum. Its slope is negative to the left of the 
minimum, passes through 0 at the minimum and becomes increasingly positive to the 
right. Thus the rate of change of the slope (i.e. the 2nd derivative) is positive at the 
minimum. The curve that is concave downward has a maximum. Its slope is positive to 
the left of the maximum, passes through 0 at the maximum and becomes increasingly 
negative to the right. Thus its rate of change of the slope (i.e. the 2nd derivative) is 
negative at the minimum. For the geyser eruption, the 2nd derivative of z(t) is the 
gravitational acceleration and is indeed negative as we expect for a maximum. The third 
curve has a point called an “inflection” where the slope is zero but which is neither a 
maximum nor a minimum. Instead the concavity of the function changes from upward to 
downward and the 2nd derivative is zero at this inflection point. Thus you can easily 
distinguish an inflection point from a maximum or minimum..  
 
 
Taylor series 
 
This is one of the most important relationships in mathematical physics. For a general 
function f(x) one can approximate its value in the neighbourhood of x = a, by a 
polynomial series: 
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! ! ≈ ! ! +   !
! ! ∙ !!!

!
+ !!! ! ∙ !!! !

!!
+⋯+ !!∙ !!! !

!!
. 

 
Where !′ stands for the !"/!", and !! stands for  !!!/!!!. Oftentimes, we are in the 
situation where ! is sufficiently close to ! that we can make say  (! − !)!   ≪    (! − !), 
and so neglect all second order terms and higher. The above equation can be written as 
 
! ! ≈ ! ! +   !! ! ∙ ! − ! + !(! − !)! 
 
where !(! − !)! is a common way of writing “terms of order (! − !)! and higher”, 
which we then neglect. After which we can write 
 
!′(!) ≈ ! ! !!(!)

(!!!)
,  

 
which is familiar to you as the approximation of the slope of the curve at ! = !.  
 
Note that another way of writing the Taylor series expansion is 
 

! ! + Δ! = ! ! + !! ! Δ! +
!′′(!)Δ!!

2! +⋯+
!!(!)Δ!!

!!  
 
 
 
Applications 
 
1. Small number expansions. 
Taylor series can be used, for instance, to calculate approximate values for small numbers 
without needing a calculator.  
 
Example: What is the value of (4.0004)

!
!  ? 

 
Answer: Let ! ! =   !

!
!, and let !   =   4.0. In which case !! = !

!
!!

!
!, and from the above 

approximation we can write that: 
 

! 4.0004 ≈ 4
!
! +   

1
2 (4)

!!! ∙ 4.0004− 4 + !(4.0004− 4)! 
 
Neglecting the second order terms this gives 
 

! 4.0004 ≈ 2+
1
4 4×10

!! ≈ 2.0001 
 
This is accurate to about 8 significant figures! 
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2. Taylor series and conservation laws 
Another place we will see Taylor series over and over is in developing differential 
equations. Here is an example for conservation of mass.  
 
Let the density (i.e., mass per unit volume) be a function of space and time: ! =
!(!,!, !, !). Now, at a completely arbitrary point in space, consider a small cube of size 
Δx×Δy×Δz. The mass of the cube is therefore Δm= ρΔxΔyΔz. 

Figure for using Taylor series for deriving conservation laws 
 
 
How does the density of the cube change with time? 
 
First, consider mass flows in the x direction only. The mass flux in the x direction is 
equal to the !", where ! = !"/!! , the speed of mass flow in the x direction.  
 
Conservation of mass requires that the rate of change of mass with time is equal to the 
total flow of mass into the cube minus the total flow of mass out: 
 

!
!!
Δ! = total  mass  flow  in-­‐total  mass  flow  out. 

 
The total mass flow is the flux times the area normal to the flow (=!"Δ!Δ!). The above 
equation can be written 

 
!
!! (ρΔxΔyΔz) = Δ!Δ!(!" ! − !" !!!!) 

 
where the Δ!Δ! is common to both terms on the right hand side, the expression for Δ! 
has been substituted in; and the notation !" ! means the value of !" calculated at x. Here 
is where the Taylor series comes in. We can write: 
 

!" !!!! ≈ !" ! +
!
!" !" ! Δ! + !(Δ!!) 

flux in at x  

Δx 

Δz 

Δy 

flux out at x+Δx 
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Neglecting the second order terms, this can be substituted into the mass conservation 
equation to give 
 

!"
!! = −

!(!")
!"  

or 
 
 

!"
!! +

! !"
!" = 0 

 
The result can be generalized to flow in all three directions and written as 
 

!!
!! + ∇ ∙ !! = 0 

 
where ! is the three dimensional velocity vector, and  ∇ ∙ () is the divergence operator. 
The above equation is the vector equation for conservation of mass, and has lots of 
applications. 
 
 
Functions with more than one argument: Partial derivatives and the gradient 
Differentiation can readily be generalized to functions with more than one variable. A 
“partial derivative” of a function is its rate of change when we make a change in only one 
of the function arguments. The symbol ∂ replaces d in the derivative operator to remind 
us that we are only varying one of the arguments. Consider the function 
 

( )22 yxey)h(x, +−=  
There are two partial derivatives 
 

( ) ( )[ ] ( )2222 yx22yx e2xyx
x

ey)h(x,
x

+−+− −=+−
∂
∂

=
∂
∂  

and 
( ) ( )[ ] ( )2222 yx22yx e2yyx

y
ey)h(x,

y
+−+− −=+−

∂
∂

=
∂
∂  

 
A plot of h(x,y) as a three-dimensional (3D) surface is a hill symmetric about the origin 
(x, y) = (0, 0): 
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Geometrically, a fixed value of y in this figure is a vertical plane parallel to the x and h 
axes. The plane defined by y = − .66  is shown outlined with dashes. This plane intersects 
the surface of the hill along the dashed curve. Then 
 

( ) 222 xx0.66

0.66y

ex1.29eex2
x
h −−−

−=

=−=⎟
⎠

⎞
⎜
⎝

⎛
∂
∂  

 
is the slope of the dashed curve. Likewise, a fixed value of x is a vertical plane parallel to 
the y and h axes. The plane defined by x = − .80  is shown outlined with dots. It intersects 
the surface of the hill along the dotted curve and 
 

( ) 222 yy0.8

0.80x

ey1.05eey2
x
h −−−

−=

=−=⎟
⎠

⎞
⎜
⎝

⎛
∂
∂  

 
is the slope of the dotted curve. 
 
In the above plot, intervals of altitude are shown as regions of different gray.  The 
boundaries between the regions have constant altitude and are called contour lines. Here 
is a contour plot (or map) of the same function.   
 

 

x 

y 

h(x,y) 
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Think of this as the hill seen from directly above.  The intersections of the two vertical 
planes with the hill are the straight dashed and dotted lines.  At the intersection of these 
two lines, (x, y) = (-0.7, -0.66), we have drawn the vector 
 

yx ˆ
y
hˆ

x
hh

∂
∂

+
∂
∂

=∇  

 
This vector is called the “gradient” of h. It is the multi-dimensional equivalent of the 
derivative. Its components are the slopes of the dashed and dotted curves at their point of 
intersection. The magnitude of the gradient 
 

22

y
h

x
h

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
=∇ |h|  

 
is the maximum slope of the plane tangent to the h(x,y) surface at the point of 
intersection.  Thus the gradient vector is perpendicular to the contour lines. It points in 
the uphill direction. 
 
Proof of this result: 
 

0.9 

0.1 

x̂
x
h
∂
∂

 

ŷ
y
h
∂
∂

 

y)h(x,∇
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The direction of the steepest slope. Starting at some point in horizontal space (x,y), the 
elevation at that point is then h(x,y). Now imagine moving away from this starting point 
by a small distance dx in the x direction and a small distance dy in the y direction. The 
vector represented this motion is denoted by 

! 

dr = ˆ x dx + ˆ y dy . The change in height is 
given by 
 

! 

dh =
dh
dx
" 

# 
$ 

% 

& 
' dx +

dh
dy
" 

# 
$ 

% 

& 
' dy  

 
The steepest slope will be when the direction of 

! 

dˆ r  is such that dh is a maximum value. 
The right hand side can be expressed as 
 

! 

dh
dx
" 

# 
$ 

% 

& 
' dx +

dh
dy
" 

# 
$ 

% 

& 
' dy =(h )dr  

 
The largest value of the dot product, and hence the largest change is when the two vectors 
are pointed in the same direction. In other words, the largest change in dh (steepest slope) 
is when 

! 

dr  and 

! 

"h  are parallel. 

! 

"h  points in the direction of the maximum slope. QED. 
 
The magnitude of the steepest slope. This is the elevation change divided by the 
horizontal distance travelled: 
 

! 

slope =
dh
|dr |

="h # dr
| dr |

 

 
The second term in the dot product is, by definition, a unit vector and so has magnitude 1. 
We have just shown that 

! 

dr  and 

! 

"h  are parallel. So the magnitude of the slope is just 

! 

"h . QED. 
 
 
 
 
 
 
Maxima and minima in more than one dimension: Least Squares line fitting (statistics, 
really) 
 
Finding maxima and minima in more than one dimension is an obvious generalization of 
the case in one dimension: To find the top of the hill in the last example, you go in the 
direction of the gradient vector until you find a point at which there is no further altitude 
gain in any direction of motion (the magnitude of the gradient vector is zero). At this 
point, the tangent plane is horizontal and the partial derivatives of h with respect to x and 
y must both be zero. 
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A very important practical example is fitting a function to data by minimizing the misfit 
between the function and the measurements. We will illustrate this for the case where the 
function is a straight line and misfit is judged by the square of the “distance” between the 
line and each data point. However, the principle is valid for more complicated functions 
and other ways of judging misfit. 
 
Suppose we have measured N data points (xi, yi) and that we have a theory that predicts 
that the relation between x and y is the straight line: 
 

bmxy +=  
 
We can estimate the slope m and the y-intercept b by finding their values that “fit” the 
data “best”. To do this, we need to define what we mean by “fit” (more precisely misfit) 
and what we mean by “best”. The misfit (often called the “residual”) of a data point can 
be defined as the difference between what we predict from the “theoretical” relation and 
the value we measured. Thus for the ith point, the misfit is 
 

iiiipredictedi ybmxyxyr −+=−= )(  
 
A useful measure of the total misfit is the sum of the squared misfits for all the data 
points 

2

1 1

2 )()( i

N N

ii ybmxrQ −+==∑ ∑  

 
We can then define the “best” fit as the values of m and b that make Q smallest. From our 
earlier discussion, it should be clear this happens when the two equations 
 

0=
∂

∂

m
Q  

and 

0=
∂

∂

b
Q  

 
are simultaneously satisfied. Using the rules for differentiation listed earlier and noting 
that partial differentiation with respect to m is computed with xi, yi and b constant, the 
first of these equations is 
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and the second equation is 
 

0)1(2)1()(2
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Defining 
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these two equations can be written 
 

CBbAm =+  
and 

EDbBm =+  
 
Both must be satisfied, so solving them simultaneously we get 

 

2BDA
BEDCm

−
−

=  

 

2BDA
BCAEb

−
−

=  

 
 
1.2 Physical tools 
 
Conservation laws 
These have enormous power to explain what we see around us, and a big aspect of the 
course will be showing why. 
 
Conservation of Energy. Energy cannot be created or destroyed, it can only be converted 
from one form into another (potential, kinetic, electrical, etc.) 
 
Conservation of Mass. Absent thermonuclear reactions, the same mass of stuff goes in as 
comes out. Apart from the Sun and dating methods using radioactive decay (why?), this 
is good enough for us on Earth. 
 
Conservation of linear momentum. Really Newton’s laws, see below. 
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Conservation of angular momentum. A circular version of Newton’s laws (see below) 
 
Conservation of electric charge. We won’t care about this that much, the total number of 
electrons and protons stays the same. 
 
(n.b. could put more in here about closed systems) 
 
Newton’s laws of motion 
1. An object will continue in a state of rest or of constant motion unless acted upon by an 
unbalanced force. Inertia (i.e. mass) keeps you doing what you’re doing unless someone 
pushes you. 
 
2. The rate of change of momentum of an object is proportional to the unbalanced forces. 
Basically, F=ma. 
 
3. Every action has an equal and opposite reaction. Push me and I’ll push back on you. 
 
 
Formulae governing uniform acceleration 
Let an object start at x = 0 at time t = 0 with initial velocity, u, and let it be subject to a 
uniform acceleration, a. Its subsequent position, x, and velocity, v, at some later time, t, 
are described by the following formulae: 
 
v2 = u2 + 2ax 
x = x0 + ut + 1/2 at2 
v = u + at 
x =1/2 (u+v)t  



 30 

Appendix: maybe useful, but not essential 
 
This section presents more advanced materials that build on what is presented above. You 
may not have seen it before. To the extent that we use it, it will be covered in detail in 
context. It is provided for the interest of students with more advanced background than is 
required. 
 
Weighted least squares 
 
The measure of misfit used above is, by no means, the only useful measure. For instance, 
suppose you want to weight the misfit of each data point in the overall misfit by a 
different amount wi. The overall misfit can be re-defined as 
 

[ ]∑ ∑ −+==
N N

iiiiiweighted ybxwrwQ
1 1

22 )()(  

 
Our best fit is fit can then be defined by the equations 
 

0=
∂

∂

m
Qweighted  

and 

0=
∂

∂

b
Qweighted  

 
Following through the rest of the algebra leading to the expressions for m and b gives 
results that are identical except that the constants A to E need to be modified as follows: 
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Commonly used weights are 

i
iw σ

1
=  

 
where the σi are the standard error (square root of the variance) of each data point. 
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Vector calculus 
 
Because h depends only on x and y, the hill example above involves a two-dimensional 
gradient. However, the gradient can be generalized to functions that depend on all three 
spatial scales in an obvious way. The 3D gradient “operator” is 
 

z∂
∂

+
∂
∂

+
∂
∂

=∇ zyx ˆ
y

ˆ
x

ˆ  

 
This operator is not a vector, but can be manipulated like a vector. Its dot product with a 
vector v is called the “divergence” of v and can be written in terms of its Cartesian 
components  
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Note that like the dot product between vectors, the divergence is not a vector. The 
divergence is related to the volume change of a fluid moving with velocity v. 
 
The cross product of the gradient operator with the vector v is called its “curl” and for 
fluid velocity is related to the angular momentum of the fluid. The cross product can be 
expressed for a vector with Cartesian coordinates by replacing the components of vector 
a in our earlier definition of the cross product with partial derivatives:   
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Useful relations using the gradient operator are: 
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0f =∇×∇  
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which is called the Laplacian. 
 
There are also rules for how the gradient operator works on combinations of functions 
and vector “fields”. (i.e. vectors that vary in space) that are analogous to the chain rules 
for ordinary derivatives. Important ones are: 
 

( ) fff ∇⋅+⋅∇=⋅∇ uuu  
 

( ) ( ) uuu ×∇+×∇=×∇ fff  
 

( ) abbabbbaba ×∇×+×∇×+∇⋅+∇⋅=⋅∇  
 

( ) ( ) ( )abbabaabba ⋅∇−⋅∇+∇⋅−∇⋅=××∇  
 
Integration can also be easily generalized to multiple dimensions. The integral of a 
function over a volume V can be approximated by dividing the volume up into small 
elements, such as cubes, multiplying the average value of the function inside each cube 
by the volume of the cube and summing up the result for all cubes inside V. The integral 
over a surface A is similarly approximated by dividing the surface up into small 
elements, such as squares, multiplying the average value of the function inside each 
square by the area of the square and summing up the result for all squares inside A. In 
each case, the true integral is the limit of the sum as you make the elements increasingly 
small. 
 
A very important relation between volume and surface integrals is called Gauss’ 
Theorem. If u is a vector “field” that varies within a closed volume and n̂ is a unit vector 
that always points out of the volume 
 

   ( ) ( )∫∫ ⋅=⋅∇
volumesametheofsurfacevolumeclosedtheofinterior

dAˆdV unu  

 
The little circle on top of the integral sign is just a reminder that the integration is over 
the complete surface. 
 
 
 


