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Introduction 
 
There are many interesting questions that involve the physical transfer of heat. These 
include: 

1. How does a bathylith cool? 
2. Why does the temperature of a cave remain relatively constant year round? 
3. Why are there hot springs unrelated to volcanism? 
4. How could we directly infer the temperature change at the end of the last ice age? 
5. Why is the average temperature of the oceans much colder than the average 

temperature of Earth’s surface? 
6. Why is Earth’s lithosphere thin enough that it can break up into plates?  
7. Why does the altitude of a mid-ocean ridge decrease as the square root of the age 

of the sea floor?  
 

There are two ways in which heat is moved. If the thermally vibrating molecules pass 
their kinetic energy to adjacent molecules, we call the process “conduction” and more 
generally, when the process is time-dependent, we call it “diffusion”. If heat is physically 
transported by larger-sale motion of a solid or fluid, we call the process “advection”. If 
the motion resulting in advection is driven by the distribution of heat, we call it 
“convection”. 
 
Diffusion and advection are not limited to heat. For instance, viscous effects in fluids and 
the decay of electromagnetic fields in media with finite electrical conductivity lead to the 
same equations as the diffusion heat, but depend on different physical constants. Thus 
once we understand how diffusion and advection work for heat, we can use the same 
ideas to investigate other interesting phenomena such as:  

8. Why do glaciers have an approximately parabolic variation of velocity across 
their width, while rivers have a more uniform velocity across their width? 

9. How can charged particles in the solar wind enter Earth’s magnetosphere? 
10. Why do hill-shapes blur over time? 
11. Why do tea leaves at the bottom of a cup that is stirred gather at the center of the 

cup when considerations of centrifugal force suggest that they should move to the 
walls of the cup? 

 
Then, with relatively modest additions to the basic ideas of diffusion, we will be able to 
understand important aspects of the dynamics of Earth’s ocean and atmosphere: 

12. Why do ice floes drift in a different direction than the wind blowing over the 
surface of the ocean? 

13. Why are large-scale ocean currents concentrated along the western edges of the 
oceans? 

14. Why is there a jet stream in the atmosphere? 
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Derivation of the diffusion equation 
 
We begin by deriving the equation that governs the time-dependence of temperature in a 
thermally conducting medium. This derivation is not mathematically rigorous, but has the 
right physical ideas and gets the right answer. This leads to one of the most important 
partial differential equations of physics and gives us the opportunity to demonstrate how 
to get useful information from such an equation without actually solving it. How to 
derive the solution for the case of a sinusoidal temperature variation at the surface of a 
half space is given in an appendix to this chapter.  You will study the behavior of this 
solution and the closely related case of a step change in the surface temperature in a lab. 
 
Heat is a concept invented before scientists understood the molecular nature of materials. 
We now know that it is kinetic energy associated with the vibrational ``dance'' that all 
molecules do at temperatures above absolute zero. This dance is random and when 
averaged over volumes that contain many molecules averages to zero. Thus it does not 
involve any net movement of material. On the other hand, if you place a ``hot'' object 
with rapidly dancing molecules next to a ``cold'' object with slowly dancing molecules, 
collisions at the boundary pass momentum from some of the fast molecules to some of 
the slow ones.  The molecules in the cold material near the boundary will then have 
somewhat higher average energy than they did before and will appear to warm up.  The 
molecules in the hot material near the boundary will have somewhat lower average 
energy than they did before and will appear to cool down. We say that heat has flowed 
from the hot material to the cold material.  
 
We do not actually measure the kinetic energy of vibration. In any case, it would be too 
much bother to find out what each molecule is doing and then add them all up.  Instead 
we measure the effect of the ensemble of vibrating molecules on something else such as 
the volume of mercury in a thermometer or the electrical resistance of carbon. 
Historically, these measurements have been reported as a quantity called temperature. 
There is a particular temperature scale (called the absolute or Kelvin scale) in which the 
temperature T is directly proportional to the heat (i.e kinetic energy of vibration) per unit 
volume 
 

 
 
where ρ is the density and cp is a constant called the “specific heat”.  We are only 
concerned with changes in heat and temperature so we write 
 

 
 

Because T (°C) = T (°K) – 273.15, ΔT (°C) = ΔT (°K) and the last  relation is valid for 
the more commonly used centigrade (Celsius) temperature with no changes. It can be 
converted to the Farenheit scale by re-defining the value of cp.  The MKS units of q are 
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the same as kinetic energy (joules) and the old units of heat (calories or Kilo-calories) are 
no longer recognized except in dietary information! 
 
The first really quantitative study of heat flow was done by Fourier who conducted a 
series of careful experiments, which showed that the heat ``flux'' (heat moving per unit 
time) through a linear rod of unit area 

 

 
where k is an experimental constant called the “thermal conductivity”, ΔT is  the 
temperature difference between the ends of the rod and L is the length of the rod.  This is 
known as Fourier’s Law. The thermal conductivity could in principle be predicted using 
“statistical” mechanics.  However, it is almost always simply measured. 
 
 More generally, if T varies only in the x direction, Fourier’s Law becomes 
 

 

and if T varies in multiple dimensions 
 

 
 

The negative sign in the last two relations is there because heat flows “downhill” from 
hot to cold. 

 
Now consider what happens when we increase the temperature by an amount ΔT on one 
face of a rectangular box of material (assumed to be solid for the moment) whose volume 
is ΔXΔYΔZ and whose other faces are kept insulated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ΔX 

ΔY 

ΔZ 

heat flux in on 
this face only 
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Conservation of energy requires that the rate of change of heat inside the volume must 
equal the flux of heat into the volume. Thus if H is the total flux in, Q is the total heat 
inside and Δt is a unit interval of time, we must have 
 

 

 
Since we are only changing the temperature on one Y-Z face, the direction of heat flow is 
in the X direction. The length of the volume in the direction of heat flow is ΔX, so the 
heat flux per unit area is approximately 

 

 
and the total heat flux through the face of the box is 

 

 

 
The total heat inside the volume is q times the volume. Thus the rate of change of Q is 
 

 

 
Equating this to the total heat flux we have 
 

 

 
which can be re-arranged as 
 

 

 
Referring to our discussion of derivatives in  Mathematical Tools, we see that as the size 
of the box and the time interval become very small, this equation becomes 
 

 

where  is called the thermal “diffusivity”.  

 
This last equation is our first example of a “Partial Differential Equation” (PDE) because 
the temperature T(x, t) is a function of both space and time and the equation involves 
derivatives with respect to both arguments.  This equation is called the one-dimensional 
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(1D) diffusion equation. The equation prior to making the box very small is a “finite 
difference” approximation to the 1D diffusion equation. 
 
Approximate behavior of the solution of the 1-D diffusion equation 
 
We now introduce a technique for figuring out the likely behavior of the solution to a 
partial or ordinary differential equation without solving it. The basic idea is very simple.  
Each derivative in the PDE is approximated by the expected change of the variable 
divided by an appropriate scale over which this change takes place. For instance, if 
temperature varies by ΔT over a distance δ, we would let 
 

 

 
We do the same thing for a time variation and let 
 

 

 
where τ is a time scale over which significant temperature change occurs. 
 
This technique should work because the solutions to most PDE’s are well-approximated 
by an exponential. For a real exponential such as 
 

 
 

the derivative is 
 

 

 
while for an imaginary exponential such as 
 

 
 

the derivative is 
 

 

 
where τ is the “radian” period of the oscillation (period divided by 2π). The “i” on the 
right side shifts the phase of the oscillation by 90º, but does not change its magnitude. 
Thus, in both cases, the approximation we have made is likely to be pretty good in 
predicting the magnitude of the behavior of the PDE solution. 
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Suppose we want to know how the annual temperature variation diffuses into the Earth. 
Substituting the above approximations into the 1D diffusion equation we get 
 

 

 
Since we know the time scale in this situation, we solve this equation for what we do not 
know: the depth at which the temperature variation has substantially decayed. 
 

 
 
Note that ΔT has cancelled out. Thus the shape of the depth variation of the solution does 
not depend on the amplitude of the temperature variation at the ground surface.  
 
The molecular thermal diffusivity of rocks is about 2 × 10-7 m2/s. Since the annual 
temperature cycle is roughly sinusoidal and there are almost exactly π × 107 seconds in a 
year (a handy number to remember along with 105 seconds in a day), the radian period π 
× 107/2π = 5 × 106 s.  This gives δ ≈ 1 meter. It is thus not surprising that the annual 
temperature variation has little effect on the cellar of a house.  Furthermore, this scale is 
small compared to any horizontal length scale likely for the surface temperature 
variation, so we are justified in using the 1D diffusion equation. 
 
Enhanced diffusion due to mixing: Turbulence 
 
The molecular thermal diffusivity for water is similar to that for rocks, so we could 
predict that the annual atmospheric temperature cycle should penetrate on order of a 
meter in an ocean.  Here are vertical profiles of ocean summer and winter temperature in 
the NE Pacific at Ocean Weather Station (OWS) Papa at 50º N, 145 ºW. 
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The annual cycle has affected a layer 100 m thick, not 1 m. This is because fluid motions 
are mixing the top 100 m of the ocean. Consider what happens if you start out with a 
straight boundary between two regions of uniform temperature and deform it by a rotary 
motion.  
 

       
 
Before the motion starts, molecular diffusion at the interface occurs as we have already 
discussed and the time scale is the molecular diffusion time. The rotary motion does two 
things: (1) it advects warm fluid into the cold region and vice versa and (2) it creates 
thinner and thinner layers that alternate hot and cold. This second process greatly reduces 
the length scale over which molecular diffusion needs to act to smooth out the spatial 
temperature fluctuations. The combination of these two processes results in an apparent 
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diffusion of heat that is much faster than molecular diffusion without mixing. Mixing 
processes that arise spontaneously in fluids are called “turbulence” and it can be shown 
that the average of the temperature over time scales long compared to the fluid motion 
time, but short compared to the original molecular diffusion time scale satisfies the 
diffusion equation with an “eddy” diffusivity that is much larger than the molecular 
value. It is obvious from the last equation, that increasing δ a factor of 100 for fixed τ 
requires that κeddy be 104 times larger than its molecular value. 
 
There, however, another important aspect of the vertical temperature that is not explained 
by turbulent mixing and, in fact cannot be explained by molecular diffusion. Here is a 
typical profile of temperature for the full depth of the ocean at low to mid-latitudes. 
 

 
 
It can be divided into three layers: a nearly uniform top layer (called the mixed layer); a 
steep drop in temperature that extends to several hundred meters called the “main 
thermocline” (as opposed to the “seasonal thermocline” seen further north at OWS Papa) 
and a deep region extending to the full depth that has a nearly constant temperature 
several degrees above 0. 
 
Re-arranging the above expression for δ gives  
 

 

 
Using κeddy = 104 κmolecular = 2 × 10-3 m2/s and an ocean depth of 4 km, gives τ = 8×109 s = 
200 years. So we could predict that the deep ocean should have the average temperature 
of Earth’s surface averaged over the last several centuries. Clearly this is not so. The 
remarkably constant temperature below the the thermocline is substantially colder than 
the average temperature of Earth’s surface.  



 9 

One could suggest that turbulent diffusion is not effective below the upper 100 m. This is 
certainly part of the story, as we will see later. However, if we instead use the molecular 
diffusivity of water, we increase the time scale by a factor of 104. Then τ equals 2 million 
years. This is a much longer time scale, but is still very short compared to the age of 
Earth and thus presumably to the age of the oceans. There is certainly no reason to think 
that the average temperature of Earth’s surface has been cold enough in recent geologic 
time (or in any geologic time) to account for the deep cold water in the oceans. So 
something else must be going on. 
 
1D Diffusion in a moving material 
 
There is an important subtlety that comes up when diffusion occurs in material is moving 
relative to the observer. The above diffusion equation must be understood as being from 
the point of view of a coordinate system (or observer) fixed to the box. That is, no 
material is allowed to cross the boundary of the box.  The reason for this is that we 
require that heat get into the box only by conduction. If mass flows across the boundary it 
can carry material with a different temperature into the volume and our calculation is no 
longer correct. Many times, however, we want to know what happens to the time 
derivative of temperature at a position that is not attached to the material. For instance, 
we might want to know the rate of rise in temperature at a weather station as opposed to 
the temperature observed by a balloon floating by in the wind. 
 
It turns out that a simple connection exists between the time derivatives in coordinate 
systems moving relative to one another. This figure illustrates the issue involved 
 
 
 
 

 
 
 
The vertical boxes are slits though which observers see the value of a sine wave fixed to 
the page. One slit is fixed in space, the other moves to the right. The observer looking 
through the fixed slit sees a constant value. The observer looking through the moving slit 
sees an oscillating value. If the fixed observer knows the wavelength of the sinusoid and 
how fast the moving observer is traveling, he can easily calculate what the moving 
observer will see.  
 
To make this concept quantitative, the total change in a function F(t, x) due to small 
changes δt and δx is 

Fixed observer sees a constant value 

Moving observer sees an oscillating value 
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Dividing this by δt we get 
 

 

 
The term on the left is the total rate of change of F is some coordinate system. The first 
term on the right is the rate of change of F holding position constant in this coordinate 
system. The second term on the right involves the velocity 
 

 

 
at which position is changing with respect to the same coordinate system.  Thus it is the 
rate of change of F due to moving by the spatial gradient of F at velocity u.  
 
If we identify the original coordinate system with one fixed to the material and use the 
notation introduced in Mathematical Tools, we can relate the rate of change of 
temperature as seen by an observer fixed to material moving at velocity u to the rate of 
change of temperature seen by an observer fixed in space by 
 

 

 
The second term on the right is called the “advection”. The term on the left is called the 
“substantial” derivative because it is relative to the “substance”. In order to write the 1D 
diffusion equation for moving material viewed in a fixed coordinate system (or fixed 
material viewed from a moving system), all we need to do is replace the partial derivative 
with respect to time with the substantial giving 
 

 

 
Maintaining the oceanic thermocline 
 
We have shown thermal diffusion in the shallow ocean is much too fast to account for a 
deep ocean that is much colder than the average surface temperature. This means that we 
need a process that can counter the downward diffusion. Upward advection of cold water 
is an obvious candidate. If the thermocline is a stable feature of the ocean, we can set the 
time derivative term in the 1D diffusion equation with advection to zero, we then have 
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As we will consistently do in this course, the vertical coordinate is z and the vertical 
velocity is w. If we approximate the vertical derivatives of T as before, we can easily 
show that 

 

 
An appropriate value for δ is the thickness of the region of high temperature gradient. 
This is about 500 m in the above figure. The vertical velocity required to keep the 
thermocline stable in the face of the downward turbulent diffusion is then 
 

 

 
This velocity is actually an upper bound, because the eddy diffusivity almost certainly 
decreases at depth as we get further from the active processes like wind waves at the top 
of the ocean. However, this value is already so low that it cannot be directly measured 
against the background of other oceanic motions.  
 
 
Appendix 
 
The 3D diffusion equation in material at rest 
 
If there are thermal gradients in all directions, a similar, but more involved argument 
leads to the three-dimensional (3D) diffusion equation 
 

 

where 
 

 

 
is the “Laplacian” of the temperature. If the diffusivity κ is not a constant in space, but is 
isotropic (does not vary with direction), it has to be taken inside the spatial derivative and 
the right side of the 3D diffusion equation becomes .  Things become 
considerably more complicated if the diffusivity is anisotropic (depends on the direction 
of the temperature gradient). This can happen, for instance, in a sediment which has 
layers of good thermal conductor separated by layers of bad thermal conductor. Such 
situations are way beyond the scope of this course! 
  
3D Diffusion in a moving material 
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The argument outlined is easily generalized to a vector velocity u and spatial gradients of 
T in any direction. The result is 

 

 

 
Non-dimensionalization of the 1D diffusion equation 
 
This section presents the solution for the 1D diffusion equation in material at rest when 
the surface temperature has a sine variation in time. We begin with a non-essential but 
useful step called non-dimensionalization.  Let ΔT, τ and δ be a constant temperature 
variation scale, a constant time scale and a constant length scale. Then define non-
dimensional temperature, time and length variables 
 

 

 
which can also be re-arranged as 
 

 
 
Using the rules for differentiation in Mathematical Tools 
 

 

 
Exactly the same steps give 

 

and thus 
 

 

 
Using these results, the dimensional form of the 1D diffusion equation 
 

 

 
becomes 
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which can be simplified to 

 

 
This may seem like a lot of work for little gain. The only useful thing that has obviously 
happened is that the temperature variation scale has canceled out.  However, the time and 
length scales are not yet chosen. If we chose them cleverly we can make 
 

 

 
and then the non-dimensional form of the PDE becomes 
 

 

 
This is clearly a step forward, because it no longer depends on the diffusivity or the time 
and length scales. It can be solved without knowing anything about the actual material 
properties or dimensions of the problem.  
 
Making the non-dimensional combination in square brackets equal one, however, implies 
that the time and length scales of the dimensional solution are not independent of each 
other. Given the diffusivity and the time scale, the length scale must be 
 

 
 
Alternatively, given the diffusivity and the length scale, the time scale must be 
 

 

 
This relationship is, of course, what we deduced from the approximate argument earlier 
in this chapter. 
 
Solution of the non-dimensional 1D diffusion equation 
 
In most of the rest of this Appendix, we will drop the “primes” from the non-dimensional 
variables because it will be obvious from the context whether we are dealing with 
dimensional or non-dimensional quantities and the primes clutter up the notation. 
We therefore want to solve the PDE 

 

 
The specific problem we want to solve is the decay of the temperature variation 
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applied to the top surface (z = 0) of a half space with constant diffusivity κ. The radian 
frequency ω is the oscillation period divided by 2π and the “radian period” 
 

 

 
Because the PDE is 2nd degree, we require a second boundary condition.  On physical 
grounds, we expect the temperature to decay with depth (z < 0) in the half space. 
Thus an appropriate second boundary condition is simply 
 

 
 
Dividing the surface boundary condition by ΔT and introducing the same non-
dimensional variables we used for the PDE, we can easily write it in its non-dimensional 
form: 

 
 
(the primes have been dropped).  The boundary condition at infinite is the same written in 
dimensional or non-dimensional variables. 
 
The algebra of this problem is much easier if we solve the problem with the surface 
boundary condition 

 
 
We can then recover what we really want by taking the “imaginary part” at the end. 
 
Whenever you have a PDE in which the derivatives in space and time are confined to 
separate terms, a useful trick is to let 
 

 
 
Then 

 

and 
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Ordinary derivatives appear on the right side of these equations, because F and G are 
functions of a single variable. Substituting these into the diffusion equation and dividing 
by FG gives 

 

 
The left side of this equation depends only on t and the right side depends only on z. The 
two sides can only be equal to each other if they are both equal to a constant, which we 
have called α.  Therefore 

                 

 
The original PDE with 1st and 2nd partial derivatives has been replaced by two ordinary 
differential equations, one of 1st and the other of 2nd degree. This technique is called 
“separation of variables” and α is called the “separation constant”. Since the surface 
boundary conditions is 

 
 

we can choose  
 

 
and then the surface condition on F is 

 
 
The boundary condition for the separated problem at infinity is  
 

 
 
We know from Mathematical Tools that the derivative of an exponential is an 
exponential and so the solution to the ODE for F is going to be an exponential. In fact, we 
saw this ODE in the atmospheric pressure example in Mathematical Tools and so we 
know that its solution is 

 
 

It is clear from the boundary conditions that A = 1 and α = i. 
 
The ODE for G is then 

 

 
We know from Mathematical Tools that the 2nd derivative of an exponential is an 
exponential, so the solution to this ODE is also going to be an exponential. Substituting 
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in the ODE for G gives 
 

 
and therefore (using a result derived in Mathematical Tools) 
 

 

There are consequently two solutions 

 
and 

 
 

Since z is less than zero, the first of these solutions blows up as depth increases.  This is 
not permitted by the boundary condition, so we must make B = 0. The surface condition 
then obviously requires C = 1 and we have 
 

 
 
where 

 

 
is called the “phase” of the solution. Finally, because we only want the sine variation, we 
take the imaginary part of this result giving 
 

 
 
The magnitude of this solution decays exponentially as z becomes more negative we 
expect. It equals e-1 when z = . Its “skin depth” in dimensional variables is 
therefore,  

 
 
If we had been more clever in our non-dimensionalization and used the length scale 
 

 
 

we could avoided all the factors of  in the non-dimensional solution. 
 
Our approximate analysis earlier missed the  factor, but since we never expected it to 
be more than an order of magnitude result, this is not an important flaw. A more serious 
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flaw in our approximate analysis is that it missed the fact that the phase of the solution 
changes with depth. At the surface, the first zero-crossing of the solution is at t = 0. At 
the skin-depth, however, the phase of the solution at the same time is  
 

 

 
radian. To find the time of the first zero-crossing, we need to solve 
 

 

 
We obtain a non-dimensional time of  t = 1 which is a dimensional time of τ. Thus the 
temperature sine wave at the skin depth is delayed by the radian period and reduced in 
amplitude by 1/e. Because the sine wave is delayed in time, we say that it has a “phase 
lag”. This phase lag increases linearly with depth. It is 2τ at two skin depths and 3τ at 
three skin depths.  The temperature signal is flipped upside down when the phase lag is π 
(180 degrees), which occurs when times the skin depth. 
 
Here are plots of non-dimensional magnitude as a function of non-dimensional depth in 
linear and semi-log format 
 

 
 

 
and here is a plot of the phase lag (which is non-dimensional) as a function of non-
dimensional depth 
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