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Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe 
 
Conservation Laws 
 
The big differences between fluids and other forms of matter are that they are continuous and they 
deform internally and continuously if shearing forces are present. Physical laws for fluids are the 
same as for all matter, but are most conveniently written in terms of quantities per unit volume. The 
conservation of momentum is thus 

 

 
where r is the instantaneous position of a “fluid particle” and ρ is the fluid density. As we have 
already discussed, a tricky point is that the volume of fluid used in this law is attached to the 
molecules of the fluid. No mass is allowed to cross its surface. The shape of the volume can deform 
as the fluid moves, but the mass inside the volume is constant. To remind us that we are discussing 
a volume that moves with the fluid, we have replaced the d in the time derivative by D. 
 
Accelerations in moving reference frames 
 
In the section on Diffusive Phenomena, we showed that the relation between time derivatives in 
frames moving at velocity u in the x-direction relative to one another is 

 

The 1st term on the right is the apparent time derivative due to sweeping spatial variations by the 
observer. We also noted in the Appendix to the same section that this can be generalized to motion 
in three-dimensions:  

 

 
This “operator” can be applied to a vector as well as a scalar. For velocity, u, we get 
 

 

 
The term  is non-linear and is responsible for turbulence and other complications in fluid 
dynamics. Fortunately, it is identically zero when u does not change in the direction of u (i.e. u is 
perpendicular to ).  Furthermore, in important applications, such as waves,  can be small 
enough to ignore. So we can investigate many phenomena without dealing with this difficult term. 
 
The effect of mass conservation on the velocity field 
 



 2 

If a fluid is incompressible (i.e. ρ is constant for a volume moving with the fluid, but not 
necessarily the same in different volumes), conservation of mass implies conservation of volume. 
The effect of this on the velocity is easier to understand for 2D velocity .  Then the z-
dimension of the fluid is constant and conservation of volume implies conservation of area in (x, y) 
planes. Let a rectangle with sides X and Y be deformed to a rectangle with sides X+δX and Y+δY.  
 

 
 
 
 
 
 
 
Conservation of area implies  
 

 
 

If the rectangle is small, δXδY is small compared to the other terms and can be ignored. Then this 
equation becomes 

 
which implies that 

 
Dividing by the original area XY, we get 

 

 
Thus conservation of area implies that relative stretching of the rectangle in the x-direction must be 
balanced by relative shrinking in the y-direction. Now consider what happens to the X dimension of 
the rectangle if the x-velocity at the left side of the rectangle u increases to u+δu at the right side. 
After a time δt, the right side has moved more than the left side.  From this figure: 
 
 
 
 
 
 
 
 
it is clear that the length of the X-dimension has been stretched by the amount: .  If u is 

increasing at a constant rate in the x–direction,  

and then 
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This result is valid for more complicated spatial derivatives of u if X is small.  Exactly the same 
argument for a variation of the y-velocity in the y-direction leads to 
 

 

Adding these last two equations gives 
 

 

 
Conservation of area implies that the left side of this equation is zero and hence 
 

 

 
which is the 2D form of .  This argument can easily be generalized to 3D and the velocity 
field in an incompressible fluid must obey 
 

 

 
Viscous forces 
 
We now want to enumerate the forces that act on the left side of Newton's 2nd Law. Consider first 
frictional forces, usually termed “viscous” in the context of fluids. Shear stress is defined as the 
force per unit area exerted tangentially on a surface. This figure shows a horizontal slab of material 
with a shear stress σ applied on the top in the  direction.   
 
 
 
 
 
 
 
 
 
 
 
 
 
If this slab is elastic and we fix the position of its bottom, experiments show that it will shear an 
amount that depends on a material property called the “shear modulus” and then stop. The material 
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resumes its original shape when σ is removed. A fluid, however, will continue to shear as long as σ 
is applied.  A fluid cannot be at rest if it is subject to shear stress. 
In fact, after some starting transients, the velocity settles down to time-independent velocity with a 
uniform gradient in the z-direction:  
 
 
 
 
 
 
 
 
 
 
 
 
 
The magnitude of the shear stress on the top boundary and the vertical derivative of the velocity are 
observed to be related by 

 

 
The parameter µ in this “shear-stress-strain-rate” relation is called the “dynamic viscosity” and has 
units of Pascal-s.  It is the physical manifestation of friction between parts of the fluid that are 
moving at different velocities. 
 
For “Newtonian” fluids, µ is independent of σ and . Liquid water, air and honey with no 
sugar crystals are Newtonian to a very good approximation. Ice, ketchup and rocks are can be non-
Newtonian. They all get “softer” (i.e. the viscosity drops) when the velocity gradient (i.e strain rate) 
increases. An approximation that is often used is 
 

 

 
Fluids that obey this relation are called “power-law” fluids.  Newtonian fluids are the case where n 
= 1 and A = 1/µ.  At the conditions prevailing in glaciers, n is expected to be close to 3.    
 
Both the shear stress and the strain-rate in the above flow are constant. So one can define an 
effective viscosity 

 

 
which will be constant for the particular flow geometry in the above figure. 
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Each layer of the fluid applies the same tangential force to the layer just below. The fluid at the 
base of the slab applies this shear stress to the bottom boundary.  To keep the fluid at the lower 
boundary from moving, it is necessary that the boundary apply an equal, but oppositely directed 
force to the base of the fluid.   This illustrates an important point about shear stresses:  Their 
direction depends on which side of a plane in the fluid you are looking at.  The two force vectors 
acting tangentially on the plane indicated by the dashed line in this figure 
 
 
 
result in the same sense of shear. If they were in the same direction, there might be a constant 
translation to the right, but no shear.  Thus a shear stress applied in the –  direction to the bottom 
of a plane is completely equivalent to a shear stress applied in the +  direction to its top.   
 
The uniform shear flow above has no time-dependence and is therefore not accelerated. In order for 
the fluid motion to change with time (i.e. accelerate), it is necessary that the shear stress at the top 
of the slab be unequal to the shear stress at the bottom.  Let the shear stress be zero at the base and 
Δσ at the top. The total force applied to the top and bottom of the slab is ΔσΔXΔY because there is 
no contribution from the bottom. The force per unit volume in the x direction is 
 

 

 
As the size of the rectangular region slab becomes very thin, this becomes 
 

 

 
The 1D conservation of momentum equation becomes 
 

 

 
If the fluid is Newtonian, we can use the shear-stress-strain-rate relation to eliminate σ giving  
 

 

 
If µ is constant and we divide by the density we get 
 

 

 
You should recognize this as the 1D diffusion equation. The “kinematic viscosity” 
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is the diffusivity of momentum. It is 10-6 m2/s for water. The dynamic viscosity of air is much less 
than for water, but its density is proportionately less also and so the kinematic viscosity of air and 
water are quite similar. 
 
The pressure gradient force 
 
Friction acts tangentially to surfaces in a fluid.  Force per unit area perpendicular to a fluid surface 
it is called “pressure”.  Consider the same block of material as before. If we apply pressure p 
equally on all faces, 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
the volume of the fluid will decrease if it is compressible. It will expand to its old size if the 
pressure is removed. This is true whether the material is elastic or a fluid. If the material is in-
compressible, the volume will not change in the presence of pressure.  In either case, however, 
there is no net force to move the volume.  Thus, unlike shear stress, pressure can exist in a fluid at 
rest.   
 
Now suppose that the pressure on the two Z-Y faces are not equal. 
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To make the picture simpler, the average pressure has been subtracted. This makes no difference 
because, as we have just discussed, the average pressure acting equally in all directions does not 
lead to motion. The total force on the left-hand Z-Y face of the block is p1ΔYΔZ and the total force 
on the right-hand side of the block is p0ΔYΔZ. The net total force per unit volume in the x-direction 
is 

 

 
and if the x-dimension of the block becomes small 
 

 

 
The negative sign is because the block has a net push to the right (increasing x) when the pressure 
is decreasing to the right. This is called the “pressure-gradient force”. Adding it into the 1D 
Newtonian conservation of momentum equation we get 
 

 

 
In 3D this becomes 

 

 
 
Body Forces 
 
The friction and pressure-gradient forces act fundamentally on surfaces and were converted to 
forces acting throughout the fluid. There are forces, however, that act fundamentally throughout the 
interior of the fluid. The most obvious example is the gravitational force per unit volume ρg. 
Including this in the 3D conservation of momentum equation in the form that we will most 
commonly want to use it 

 

 
We have divided by density and defined the direction of gravity to be vertical with z positive 
upward. Other body forces are present if the fluid is electrically charged and is subject to an electric 
field or if it is electrically conducting and moves in a magnetic field. We have discussed these 
forces in the context of plasmas, but will not go further into them in this course.  
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Density and pressure variation in an ocean and atmosphere at rest 
 
If the velocity is zero, the momentum equation reduces to 
 

 
Its horizontal components 

      and      

 
imply that p depends only on the vertical coordinate z.  If ρ is constant, its vertical component 
 

 

can be integrated to give 
 

 
where p0 is the pressure at z = 0. This relation is adequate in the ocean where this “hydrostatic” 
pressure increases linearly with depth by about 1 atmosphere for every 10 meters and in the solid 
earth, where it is called “lithostatic” pressure and increases about 1 atmosphere every 3 meters. 
 
Earth’s atmosphere, however, is a compressible mixture of gasses and density depends on 
significantly on pressure.  The ideal gas law can be written in the form 
 

 
 
where R = 287 J/Kg/ºK for Earth’s dry atmosphere and T is the absolute temperature. Although T 
varies by 10’s of degrees laterally and vertically, these variations are small compared to the average 
temperature of the lower atmosphere, which is about 290 ºK. It is therefore reasonable to 
approximate T as constant. The z derivative of the ideal gas law is then 
 

 

 
Using this to eliminate pressure derivative from the vertical component of the momentum equation, 
we obtain 

 

where 
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is the atmospheric “scale height” This ODE was solved in the Mathematical Tools section with the 
result that 

 
Alternatively, we can use the ideal gas law to eliminate ρ from the vertical component of the 
momentum equation to obtain 

 

 
which is the same ODE as for ρ. Thus the vertical variation of pressure is identical to the vertical 
variation of density.  
 
These results can be used to estimate the error we made above in approximating the density of the 
ocean as constant. We know the ocean is, in fact compressible because sound propagates at a speed   
of about csound = 1,500 m/s. One can argue on dimensional grounds alone that the scale height in the 
ocean should be 

 

 
(This result follows rigorously from a derivation of sound speed from fluid compressibility.) Thus 
the compression increases density by a factor of e(5/230)

  = 1.02 at the bottom of the ocean over what 
it would be if the ocean were incompressible. 
 
 
Flow of an ice sheet or glacier down a slope 
 
Consider an ice sheet or glacier of constant thickness h on a slope that is inclined at an angle θ to 
the horizontal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is clear that gravity has components along and perpendicular to the ice sheet.  The gravity 
component along the ice sheet drives flow downhill. This downhill force must be balanced by shear 
stress at the base of the ice. This problem is easier to solve if it is rotated counter-clockwise so 

θ 

g sin (θ) 

g 

g cos (θ) 
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that is perpendicular to the top and bottom of the ice instead of in the direction of gravity.  The 
algebra is also much simpler if we choose z = 0 at the upper surface of the ice and z = +h at the 
contact with the ground. Thus z increases downwards in contrast to almost all other examples we 
do in this course. This changes the sign of vertical derivatives in the momentum equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that with the choice of coordinates, the components of gravity are in the positive x and 
positive z-directions. 
  
We make four assumptions: (1) the flow is horizontal in this rotated coordinate system; (2) 
variations in the y-direction can be neglected; (3) the flow is steady and (4) the ice is a power-law 
fluid. The first assumption is reasonable if the horizontal length of the ice sheet is long compared to 
its thickness and we stay away from the ends. The second is reasonable if the width of the flow is 
large compared to its thickness. Since ice sheets are typically 100’s of km in both length and width 
and only 3 km or less thick, these assumptions are clearly reasonable. Glaciers are typically 10’s of 
kilometers long and kilometers wide, but are only 10’s of meters thick.  Thus they also qualify for a 
1D flow approximation. 
 
 The third assumption is reasonable if the time scale for velocity variations is long compared to the 
time it takes momentum to diffuse through the thickness of the ice.  To estimate the viscous 
diffusion time for non-Newtonian ice, we need to use an effective viscosity. For glaciers and ice 
sheets it ranges range from 1010 to 1014 m2/s. The maximum diffusive time scale is obtained using 
the minimum viscosity and the thickest ice. For 3 km thick ice 
 

 

 
Since this is many orders of magnitude less the years to centuries over which ice sheet and glacier 
motion varies, the second assumption is also entirely reasonable. 
 
With these assumptions, the flow is 1D and the time-dependence of the momentum can be ignored. 
The vertical component of the momentum equation is 
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or 

 

The right side of this equation is a constant. So its indefinite integral of with respect to z is 
 

 
 
as you can easily verify by substitution. The pressure at the top of the ice (z = 0) is atmospheric 
(patm). The vertical variation of pressure in the atmosphere is very small compared to the vertical 
variation of pressure in ice, so to a very good approximation patm is independent of x. Therefore  
 

 
 
is independent of horizontal position and 
 

 
 
is also. This pressure is, of course, equal to the hydrostatic pressure that would be exist if the ice 
were stationary. 
 
The x-component of the 1D momentum equation is  
 

 

 
where we have used the form that does not assume a Newtonian fluid. Note that the sign of the 
shear stress derivative has reversed because we have reversed the direction of increasing z.  
 
We have just seen that p does not depend on x, so the pressure gradient term is zero and therefore 
 

 

 
Again, the right side of this ODE is constant. Its indefinite integral is 

 
 
 

Since the atmosphere exerts no shear stress on the top of the ice (not quite true, but wind stress is 
very small compared to the shear stresses in the much more viscous ice), C must be zero and 
 

 
 
This the shear stress that the fluid above depth z exerts on the fluid below depth z.  This shear stress 
is in the positive x-direction as it should be for a driving force in that direction. The ice below depth 
z resists the motion with a shear stress of the same magnitude but opposite, negative x-direction. 
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The next step is to substitute this shear stress into the shear-stress-strain-rate relation for a power 
law fluid: 

 

 
Again, the negative sign on the left the consequence of reversing the direction of increasing z. It is 
useful to non-dimensionalize u and z by letting u = Uu' and z = hz'. Substituting these into the last 
equation and dropping the primes, we get 
 

 

 
where K is a constant that absorbs all the terms in front of zn. The indefinite integral of this 
equation is 

 

 
The constant D is determined by the condition that u = 0 at z = 1 (i.e. the bottom of the ice at 
dimensional z = h). Thus 
 

 

 
which can be solved for 

 

 
Then 

 

 
We have not yet specified the velocity scale U. This can be conveniently done by choosing 
 

 

because then 
 

 
 
 
which is 1 at the top and 0 at the bottom of the ice.   The following figure shows this non-
dimensional function for  n = 1 (Newtonian), 3 (glacier ice), 10 and 50. 
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As n increases, the shearing is confined more and more to the lower boundary of the ice. In the 
limit that n goes to infinity, the ice slides over the base with no internal deformation.  
 
The choice above implies that 

 

and thus 

 

 
which is the dimensional ice velocity at the top surface. The Newtonian case with is n = 1 and 
A=1/µ gives 
 

 

 
The non-Newtonian case with n = 3 gives 
 

 

 
The case n = ∞ is called “perfect plasticity” because the ice deforms only when the shear stress 
exceeds a critical value called the “yield stress”.  The shear stress at the base of the ice is 
 

 
 
must exceed the yield stress for the ice to move. 

n=1 

3 

10 
50 
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Rotating flow  
 
Since Earth rotates and we are forced to rotate with it, we are always making geophysical 
measurements in an accelerated reference frame. We shall see that this is not always important, but 
in the oceans and atmosphere, the effects of rotation are critical. 
 
Consider a disk that is rotating about its center (such as a playground merry-go-round). Suppose 
you throw a ball across the disk along its diameter. If you observe the flight of the ball standing 
beside the disk you get a completely different impression of the forces acting on the ball than if you 
are sitting on the edge of the rotating disk. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you are standing on the ground beside the disk, you see the ball move in a straight line across its 
diameter. At four successive times its position will be as shown in the four diagrams (a) , (b) , (c) 
and (d) above. If, however, you are fixed to the disk, you will perceive that the ball curves because 
the disk turns under the straight path of the ball and your eyes are moving with the disk. In fact, if 
the disk is rotating fast enough, you will get to the other end of the straight flight of the ball just as 
it arrives and you can catch it! you will think that the ball has gone in a circle that is half the 
diameter of the disk even though its actual path was straight along the diameter. If you are unaware 
that the disk was rotating, you would conclude that the ball is acted on by a mysterious force that 
causes it to orbit in a circle. This “force” is called the “Coriolis force”. It is not a force at all, but a 
consequence of trying to explain the motion of a particle using a physical law in a reference frame 

(a) (b) 

(c) (d) 
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position of observer 
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for which it is invalid.  Never-the-less, the observer on the rotating disk gets the right answer if he 
or she thinks that the Coriolis effect is a real force and so Coriolis force is a useful concept. 
 
We can explicitly derive the Coriolis effect by employing the properties of the cross product.  Let 

 be the velocity measured by a non-rotating observer (i.e. with some sort of sky hook) and let  
be the velocity measured by an observer on the surface of the rotating Earth. The two 
measurements differ by the velocity of rotation . Thus  as you can see in 
this figure:  
 
 
 
 
 
 
 
 
 
 
 
 
 
Replacing the velocity with the time derivative of the position vector r 
 

 

 
From this relation we see that the time derivative operator in the fixed frame is related to the time 
derivative operator in the rotating frame by 

  

  
Note that r is the same from the point of view of both observers, but the time derivative is not.  
Now we want to calculate what happens to the acceleration.  Assuming that Ω is constant 
 

 

Ω 

r 

ur = Ω × r  
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The term is the acceleration necessary to keep the rotating observer going around the 
rotation axis. Because it depends only on position, this “centripetal” term can be moved to the force 
side of the equation where it behaves just like a gravitational field and can be absorbed into the 
gravity term. In fact, when gravity is measured at the Earth's surface, you actually measure the total 
of the force due to the mass attraction and this centrifugal force. This is a major reason that the 
“International Gravity Formula”, which is the standard against which gravity anomalies are judged 
depends on latitude. The other reason is that the rotating Earth deforms to an ellipsoidal shape so 
that the distance to the center of mass depends on latitude. 
 
The term is called the Coriolis term. Because it is perpendicular to u, it cannot change the 
kinetic energy of the mass, only its direction of motion. On the Earth's surface, it causes an 
apparent force per unit volume  which is always to the right (left) of the velocity in 
the northern (southern) hemisphere. Its magnitude is , where  is the angle from the 
pole of rotation to the point of observation (called the co-latitude). Thus the Coriolis force is 
maximum at the pole of rotation and zero at the equator. 
 
If you give a mass such as parcel of water in the ocean a push and it is not acted on by significant 
viscous forces, it experiences a constant acceleration perpendicular to its velocity.  This is precisely 
the same situation as the mass swinging on a string, the satellite orbiting around a planet or the 
electron gyrating in a magnetic field. We know that the result must be that the mass travels in a 
circular path on the Earth's surface.  Balancing the magnitude of the Coriolis force and the 
centrifugal force due to the local curvature gives 

 

where η is the angular frequency of oscillation around the local orbit of radius R. Since , we 
conclude that 

 
 
Like an electron in a magnetic field or a satellite in a gravitational field, the radius of the orbit 
depends on the initial velocity of the mass. These oscillations are often observed in the ocean. They 
are called “inertial” oscillations and η is called the “inertial frequency”. 
 
The Navier-Stokes Equation 
 
Including the Coriolis term in the momentum equation and absorbing the centrifugal force into 
gravity, we finally have 
 

 

 
which is often called the Navier-Stokes equation instead of the momentum equation. We have left 
the Coriolis term on the acceleration side of this equation to emphasize that it is not a force in the 
usual sense. This equation is still not complete, because fluids such as plasmas have 
electromagnetic forces in addition to those we have looked at. A full treatment of them is beyond 
the scope of this course. 


