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8. Instabilities

Up to now we hav e mostly considered motions that were steady, oscillated or
decayed with time. However, the most interesting flows are those that grow sponta-
neously with time, that is are unstable. We could easily spend an entire academic year on
this subject. This chapter is therefore only intended to give a feel for how the understand-
ing of unstable phenomena is approached.

8.1. Thermal convection

We first briefly study one of the most important instablities in geophysics: the over-
turning motion of a fluid heated from below and cooled from above. It is important in
driving plate tectonics, cooling Earth’s interior, the formation of clouds and thunder-
storms and numerous other phenomena at wide variety of scales. We hav e already seen
that a stratified fluid is stable if and only if density decreases upwards. The reverse of this
is not necessarily true. In fact, in the case we consider first, instability requires that the
downward decrease in density exceed a finite threshold. Physically, it is necessary that
the release of potential energy be finite, because friction always absorbs energy for any
finite motion. The release of potential energy must exceed this loss.

8.1.1. Equations for Rayleigh-Benard convection in a horizontal layer

The diffusion equation for temperature

dT

dt
= κ ∇ 2T

was derived in a coordinate system fixed to the mass of the fluid. Thus
d

dt
needs to be

interpreted as the substantial derivative
D

Dt
. In an Eulerian reference frame (fixed to iner-

tial space), we then have

∂T

∂t
+ u ⋅ ∇ T = κ ∇ 2T

To this we must ad the momentum and continuity equations. We shall assume the Boussi-
nesq approximation in which the effect of variable density enters only where it multiplies
gravity.

∂u
∂t

+ u ⋅ ∇ u + ∇
p

ρ0
= −

∆ρ
ρ0

gẑ + ν ∇ 2u

∇ ⋅ u = 0

where ρ0 is a typical density within the fluid layer and ∆ρ is the density deviation from
ρ0

Now consider the horizontal layer shown in Figure 51. The top of the layer is main-
tained at temperature Ttop and the bottom at Ttop + ∆T . The 0th order equations when the
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fluid is at rest are:

u = 0

∂T

∂t
= κ

∂2

∂z2

These have a steady-state (
∂T

∂t
= 0) solution

T0(z) = Ttop + ∆T 


d − z

d



(see Figure 51).

The coefficient of thermal expansion is defined by

α =
∂ρ
∂T

and we shall assume that α is constant. Then the 0th order density structure is

ρ00(z) = ρ0


1 − α (T0(z) − Ttop)




where, for convenience, we have defined ρ0 = ρ(Ttop), which is the highest density in the
layer (again see Figure 51). If we need it, we can easily find the hydrostatic in the layer
by integrating

p0 = p(d) − g
z

d
∫ ρ00(ξ )dξ

We now consider small perturbations to the 0th order solution. Let:

u = 0 + u1

T = T0 + T1 T1 << T0

p = p0 + p1 p1 << p0

∆ρ
ρ0

=
ρ − ρ00

ρ0
= − alphaT1

Substituting these into the thermal, momentum and continuity equations above and then
substracting the 0th order equations gives the 1st order equations

∂T1

∂t
+ u1 ⋅ ∇ T0 = κ ∇ 2T1

∂u1

∂t
+ u1 ⋅ ∇ u1 + ∇

p1

ρ0
= −α gT1ẑ + ν ∇ 2u1
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∇ ⋅ u1 = 0

where I have deliberately kept the 2nd ord term u1 ⋅ ∇ u1 for the moment. Note that

u1 ⋅ ∇ T0 = w1
dT0

dz
= − w

∆T

d

8.1.2. Non-dimensionalization

The next step is to choose apporpriate scales for each of the variables. There are
two obvious scales set by the geometry and temperature boundary conditions:

T1 = ∆Tθ′

x, y, z = d(x′, y′, z′)

where a ′ implies a non-dimensional variable and have denoted non-dimensional tempera-
ture by θ′ so as not to mix it up with ∆T . It is not immediately obvious what to choose as
for the other scales, so let

t = τ t′

p1 = Π p′

u1 = Uu′

If we substitue these into the thermal equation

∆T

τ
∂θ′
∂t′

−
U ∆T

d
w′ =

κ ∆T

d2
∇′ 2θ′

Multiplying this equation by
τ

∆T
gives

∂θ′ − 

Uτ
d



w′ = 


κ τ
d2



∇′ 2θ′

The terms in [] multiply the advection and diffusion terms. Near the horizontal bound-
aries, vertical motion will be small and diffusion must dominate vrtical heat flow. Else-
where in the fluid, advection must be important or the solution would not differ from the
0th order conduction solution. In order for a growing solution to exist, we must also have
an important time-dependent term. Thus we expect that all terms in this equation must be
important. So we choose



Uτ
d




= 1



κ τ
d2




= 1

These imply τ =
d2

κ
, which is the thermal diffusion time constant for the layer thickness
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and U =
= d

τ
=

κ
d

, which is the velocity at which a temperature perturbation diffuses in

the layer. Then, dropping the primes

∂θ
∂t

− w = ∇ 2θ

is the non-dimensional thermal equation.

The non-dimensional continuity equation is obviously

∇ ⋅ u = 0

The momentum equation becomes

U

τ
∂u′
∂t

+
U2

d
u′ ⋅  ∇ u′ +

Π
d

∇ p′

ρ0
= α g ∆Tθ′ẑ +

νU

d2
∇ 2u′

The first term on the right is the bouyant driving force, while the second term is the vis-
cous dissipation. The fundamental physics of convection is a balance between mechanical
energy input from thermal bouyancy to mechanical energy dissipation by friction. The
friction term must be important if the system is not to run away; so in order to more eas-
ily compare the relative importance of the other terms to the dissipation term, we multiply

the above equation by
d2

νU
. Then





d2

ντ





∂u
∂t

+




Ud

ν




u ⋅ ∇ u +





dΠ
νU ρ0





=




α g ∆Td2

νU





+ ∇ 2u

where I have again dropped the primes.

Using our choices for U and τ from our consideration of the thermal equation

d2

ντ
=

d2

ν (d2/κ )
=

κ
ν

= 1/Pr =
1

Prandtl #

dU

ν
=

dκ /d

ν
=

κ
ν

= 1/Pr

α g ∆Td2

νU
=

α g ∆Td3

νκ
= Ra = Rayleigh #

Now, choose

dΠ
νU ρ0

= 1

which implies that the scale for the pressure fluctuations due to to thermal bouyancy is

Π =
νκ ρ0

d2
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and the non-dimensional momentum equation is finally

1

Pr





∂u
∂t

+ u ⋅ u




+ ∇ p = Raθ ẑ + ∇ 2u

You can now see why I hav e I kept the 2nd order term u ⋅ u. It is of the same size

as the 1st order term
∂u
∂t

. Thus when the time derivative term is important, so is the non-

linear inertia.

The Prandtl number determines whether the inertia terms are important at all. For
example:

Solid Earth very large ν Pr → ∞
Oils moderate to large ν , small κ Pr >> 1
Water Pr = 7
Stars very large κ (radiation) Pr → 0
Mercury very large κ (metallic conduction)) Pr << 1

Thus all situations are possible in nature and can be realized experimentally. We are only
going to consider the case Pr → ∞. Then the complete system of non-dimensial equa-
tions is

∇ p = Raθ ẑ + ∇ 2u

∇ ⋅ u = 0

∂θ − w = ∇ 2θ

Note that infinite Prandtl number does not completely remove time-dependence even
though the time-dependent inertia is neglected. It still survives in the thermal equation.

8.1.3. Onset of convection

We now want to ask whether there is a marginally stable solution to the above sys-
tem. By this we mean a solution that neither grows nor decays (i.e. is right on the bound-
ary between growing and decaying solutions). An important question is whether this
marginally stable state oscillates. It can be proven (although I will not) that in this case
the marginally stable state does not oscillate. Thus it must be time-independent with
∂θ
∂t

= 0.

For simplicity, consider only 2-D motion in the x-z plane. We then get four equa-
tions for the four unknowns p, u, w and θ

∂p

∂x
= ∇ 2u
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∂p

∂z
= Raθ + ∇ 2u

∂u

∂x
+

∂w

∂z
= 0

−w = ∇ 2θ

Elimating p, u and w by cross-differentiation and substitution leads to an equation for θ
alone

∇ ∇ 2
∇ 2θ = Ra

∂2θ
∂x2

= 0

The presence of the Laplacian operator ∇ 2 suggests that we should try a sinusoidal
solution (which could be formally deduced by separation of variables). Since T is fixed at
the top and bottom of the layer, the boundary condtion on its perturbation is θ = 0 on the
horizontal boundaries. If we further assume that the layer extends to infinity in the hori-
zontal, we expect an infinite of the solution in the horizontal direction. So we can try

θ = sin kx sin πz

where k is the horizontal wav enumber (see Figure 52(a)). Then

∇ 2 → − (π2 + k2)

∂2

∂x2
→ − k2

and the partial differential equation for θ becomes an algebraic one

−(π2 + k2)3 + Ra = 0

which can be immediately solved for Ra. Thus Ra is not arbitrary. For each chice of the
horizontal wav enumber k, only one value of Ra is allowed. For other values of Ra, the
time derivative will not be zero. It should be self-evident that Ra larger than the "critical"
value must have a growing solution because the bouyancy forcing is stronger than
required for marginal stability. Conversely, Ra smaller than the "critical" value must have
a decaying solution because there is insufficient bouyancy forcing to overcome friction.

If we plot Ra against k (Figure 52(b)) we get a concave upward curve. There is an
absolute minimum value of Ra, which we call the critical Rayleigh number, Rac below
which no motion is possible and above which we expect motion. If Ra (i.e. ∆T ) is slowly
increased from 0, we would expect to see 2-D convection start at Rac and have the corre-

sponding wav enumber kc. To find Rac and kc, we let
∂Ra

∂k
= 0. Since

k2 Ra = (π2 + k2)3

differentiation by k gives
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2kRa + k2 ∂Ra

∂k
= 3(π2 + k2)22k

The second term on the left is 0, so we must have

Ra = 3(π2 + k2)2

But we already have

Ra =
(π2 + k2)3

k2

Setting these two expressions equal to each other, we can easily find that

kc =
π

√ 2

which implies a non-dimensional wav elength of √ 2 or a dimensional wav elength √ 2 times
the depth of the layer.

Substituting kc back into one of the expressions for Ra we have

Rac =
27π4

2
= 65 7. 5 =

α g∆Td3

κν

There is an important caveat to the above calculation. The solution

θ = sin kx sin πz

leads to the conclusion that

u proportion cos kx cos πz

Thus the horizontal velocity is maximum at the top and bottom of the layer. Thus this
solution is only compatible with stress-free horizontal boundaries. Solutions with one or
two no-slip boundaries alos exist, but are more complicated. Rac inceases as the number
of no-slip boundaries increases. It is 1708 for two.

Note also that

θ = sin kx sin nπz

with n odd are also solutions. However, these higher modes all have higher values of Rac

and would not be observed because the 1st mode starts first and once convenction starts,
the marginally stable analysis breaks down. However, whatever does happen after the
onset of convection, its temperature structure will be strongly prejudiced by that which
first exists.

8.2. Double Diffusion

When density depends on two quantities that diffuse at different rates, an ostensible
stable situation can become uinstable. For instance, heat diffuses 100 times faster than
salt in the ocean. Figure 53(a) sketches a T-S plot for an initially stable situation with
cold, relatively fresh water (1) beneath warm, salty, but less dense water (2). If a parcel of
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(1) is raised into (2), it will warm up long before there is much change in its salinity and
its density (3) will become less than (2). The parcel will continue to rise. Since this phe-
nomenon is more effective if the scale on which the diffusion occurs is small, what is
actually observed in a fluid is horizontally thin "plumes" called salt fingers (see Figure
53(b)).

This precise situation occurs when Antarctic Bottom Water flows under North
Atlantic Deep (NAD) water and at the top of the NAD at lower latitudes, where surface
water is warmed by the sun and made salty by evaporation. The resultant "double diffu-
sive" convection is a significant contributor to vertical mixing in these two situations. It
is has been suggested that one could use oceanic stratification to generate energy by using
a vertical tube extending through the thermocline. This tube would allow heat to diffuse
and warm the water as it rose in the pipe. The salinity difference between the surface and
deep water could generate about a 1 meter pressure head that could drive an electric gen-
erator.


