Solar wind interaction at Jupiter

\(v \) constant \(\Rightarrow v \sim 400 \text{ km s}^{-1} \)

\(nvr^2 = \text{constant} \Rightarrow n \sim 0.2 \text{ cm}^{-3} \)

\(B_{\text{mag}} r^2 = \text{constant} \Rightarrow B_{\text{mag}} \sim 0.2 \text{ nT} \)

\(B_x \sim 0.2 B_y \)

Jovian dipole moment the opposite direction as Earth

\(\Rightarrow \) Northward IMF leads to increased dynamics

Northward IMF: MP \(\sim 63 R_J \)

Southward IMF: MP \(\sim 92 R_J \)
The Jovian magnetosphere is the largest object inside the solar system.
Tail can reach past the orbit of Saturn - 5 AU or over 1000 R_J away
Processes controlling Jovian magnetosphere

Jupiter magnetic field strength -
“surface” equatorial field = 700,000 nT

Jupiter corotation rate - 9.6 hours

Internal plasma source - 1 ton s⁻¹ lost from Io
Corotation

Moons travel into their own wake
Io’s orbital velocity = 17 km s$^{-1}$
Plasma flow velocity = 74 km s$^{-1}$
Magnetotail

Corotation (in addition to other processes) leads to significant dawn - dusk asymmetry

Bi-directional streaming plasma observed by Ulysses ⇒ closed fieldlines
Reconnection - Dungy model
Reconnection - Vasyliunas model

Physics of the Jovian magnetosphere
Pulsating X-ray spot
- 45 minute period

Relativistic electrons with
40 minute intensity variations
on the dusk side, high latitude

Quasi-periodic explosive
magnetic merging process
During quiet solar activity times, Jupiter a stronger radio source than the Sun
Closure of cororation currents in the auroral zone?
Multiple Footprint Aurora

Alfvén wing

$\nabla \rho$

Torus
\(M_A = 0.3 \)
\(\beta = 0.04 \)
\(M_s > 1 \) but fast Mach number < 1
Io has equatorial aurora
Plasma Density and Flow

Io’s ionosphere is strongly advections dominated

Plasma slowed in Io’s ionosphere, redirected around moon, an then reaccelerated in the wake (by ~ 6R_J).

Ionosphere has smaller density and smaller scale height on upstream side maximum density seen in the flanks ~ 10x enhancement in wake ~ 5x

How is mass supplied to torus? How is it heated/accelerated?
About 2/3 of ioegenic material lost through charge exchange
Neutral Cloud

- Cold torus: Ne ≈ 1000 cm$^{-3}$, S$^+$, Ti, Te ≈ 1 eV
- Neutral cloud: SO$_2$, SO, O, S, Na
- Warm torus: 90% of plasma, Ne ≈ 2000 cm$^{-3}$, O$^+$, S$^{++}$, Ti ≈ 100 eV, Te ≈ 5 eV

Diagram showing the interaction of the neutral cloud with Io and the magnetic field.
Jet: Electric fields associated with Jupiter’s magnetospheric interaction with Io rip ions out of Io’s collisionally thick atmosphere.
Stream: Leads Io’s orbit and undulates above and below the centrifugal equator. Stream formed by NaX⁺.
Banana: Low energy neutral cloud generated by sputtering
Closer to Jupiter than Io, at ~ 5.6 R_J

Ribbon - tracer for position of max density

At the same radial distance as Io
Ribbon

Jupiter Cold torus Ribbon Io Warm torus

T_i, n_e, n_i decrease
n_e, n_i increase at center to cold torus

T_i decrease
n_e increase

T_i peak

n_e, n_i
Decrease
T_i, T_e?

S$^+_{\text{emissions}}$